論文の概要: Inferring Change Points in High-Dimensional Regression via Approximate Message Passing
- arxiv url: http://arxiv.org/abs/2404.07864v2
- Date: Fri, 18 Oct 2024 15:23:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:22:56.647701
- Title: Inferring Change Points in High-Dimensional Regression via Approximate Message Passing
- Title(参考訳): 近似メッセージパッシングによる高次元回帰変化点の推定
- Authors: Gabriel Arpino, Xiaoqi Liu, Julia Gontarek, Ramji Venkataramanan,
- Abstract要約: 信号と変化点位置の両方を推定するための近似メッセージパッシング(AMP)アルゴリズムを提案する。
パラメータ数$p$がサンプル数$n$に比例する高次元極限において、その性能を厳格に特徴づける。
高次元極限における変化点上のベイズ後部分布を効率よく計算するために,我々のAMPイテレートをどのように利用できるかを示す。
- 参考スコア(独自算出の注目度): 9.660892239615366
- License:
- Abstract: We consider the problem of localizing change points in a generalized linear model (GLM), a model that covers many widely studied problems in statistical learning including linear, logistic, and rectified linear regression. We propose a novel and computationally efficient Approximate Message Passing (AMP) algorithm for estimating both the signals and the change point locations, and rigorously characterize its performance in the high-dimensional limit where the number of parameters $p$ is proportional to the number of samples $n$. This characterization is in terms of a state evolution recursion, which allows us to precisely compute performance measures such as the asymptotic Hausdorff error of our change point estimates, and allows us to tailor the algorithm to take advantage of any prior structural information on the signals and change points. Moreover, we show how our AMP iterates can be used to efficiently compute a Bayesian posterior distribution over the change point locations in the high-dimensional limit. We validate our theory via numerical experiments, and demonstrate the favorable performance of our estimators on both synthetic and real data in the settings of linear, logistic, and rectified linear regression.
- Abstract(参考訳): 一般化線形モデル(GLM)における変化点の局所化問題は,線形,ロジスティック,修正線形回帰を含む統計学習において広く研究されている問題の多くをカバーするモデルである。
本稿では,信号と変化点位置の両方を推定し,パラメータ数$p$がサンプル数$n$に比例する高次元限界において,その性能を厳密に評価する,新しい,計算効率の良い近似メッセージパッシング(AMP)アルゴリズムを提案する。
この特徴付けは、状態の進化的再帰という観点から、変化点推定の漸近的ハウスドルフ誤差などの性能測定を正確に計算し、信号や変化点に関する以前の構造情報を利用するようにアルゴリズムを調整することができる。
さらに,高次元限界における変化点位置上のベイズ分布を効率よく計算するために,我々のAMPイテレートをどのように利用できるかを示す。
数値実験により理論を検証し,線形回帰,ロジスティック回帰,修正線形回帰の設定において,合成データと実データの両方で推定器の良好な性能を示す。
関連論文リスト
- Semi-Supervised Deep Sobolev Regression: Estimation, Variable Selection
and Beyond [3.782392436834913]
本研究では,半教師付き深部ソボレフ回帰器であるSDOREを提案し,基礎となる回帰関数とその勾配を非パラメトリックに推定する。
我々は、SDOREの収束率を総合的に分析し、回帰関数の最小値の最適値を確立する。
また、重要なドメインシフトが存在する場合でも、関連するプラグイン勾配推定器の収束率を導出する。
論文 参考訳(メタデータ) (2024-01-09T13:10:30Z) - Refining Amortized Posterior Approximations using Gradient-Based Summary
Statistics [0.9176056742068814]
逆問題の文脈における後部分布の補正近似を改善するための反復的枠組みを提案する。
そこで我々は,本手法をスタイリング問題に適用して制御条件で検証し,改良された後部近似を各繰り返しで観察する。
論文 参考訳(メタデータ) (2023-05-15T15:47:19Z) - Mixed Regression via Approximate Message Passing [16.91276351457051]
複数の信号と潜伏変数を持つ一般化線形モデル(GLM)における回帰問題について検討する。
混合線形回帰では、それぞれの観測は$L$信号ベクトル(回帰器)の1つから来るが、どれがどれであるかはわからない。
最大アフィン回帰では、各観測は最大で$L$アフィン関数から成り、それぞれ異なる信号ベクトルによって定義される。
論文 参考訳(メタデータ) (2023-04-05T04:59:59Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
不均一な問題に対する近似メッセージパッシングアルゴリズム(AMP)を導出する。
特に,情報理論の閾値よりも大きい信号と雑音の比を必要とする既知のアルゴリズムが,ランダムよりも優れた処理を行うための統計的・計算的ギャップの存在を同定する。
論文 参考訳(メタデータ) (2023-02-13T19:57:17Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Variance-Aware Off-Policy Evaluation with Linear Function Approximation [85.75516599931632]
線形関数近似を用いた強化学習における非政治的評価問題について検討する。
本稿では,値関数の分散を推定し,フィルタQ-Iterationにおけるベルマン残差を再重み付けするアルゴリズムVA-OPEを提案する。
論文 参考訳(メタデータ) (2021-06-22T17:58:46Z) - Piecewise linear regression and classification [0.20305676256390928]
本稿では,線形予測器を用いた多変量回帰と分類問題の解法を提案する。
本論文で記述されたアルゴリズムのpython実装は、http://cse.lab.imtlucca.it/bemporad/parcで利用可能である。
論文 参考訳(メタデータ) (2021-03-10T17:07:57Z) - Slice Sampling for General Completely Random Measures [74.24975039689893]
本稿では, 後続推定のためのマルコフ連鎖モンテカルロアルゴリズムについて, 補助スライス変数を用いてトランケーションレベルを適応的に設定する。
提案アルゴリズムの有効性は、いくつかの一般的な非パラメトリックモデルで評価される。
論文 参考訳(メタデータ) (2020-06-24T17:53:53Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
[1]では、ランダムに投影された線形判別式のアンサンブルを用いてデータセットを分類する。
我々は,計算コストのかかるクロスバリデーション推定器の代替として,誤分類確率の一貫した推定器を開発する。
また、実データと合成データの両方で投影次元を調整するための推定器の使用を実証する。
論文 参考訳(メタデータ) (2020-04-17T12:47:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。