Counting statistics of ultra-broadband microwave photons
- URL: http://arxiv.org/abs/2404.07868v4
- Date: Fri, 25 Oct 2024 15:58:51 GMT
- Title: Counting statistics of ultra-broadband microwave photons
- Authors: Simon Bolduc Beaudoin, Edouard Pinsolle, Bertrand Reulet,
- Abstract summary: We report measurements of counting statistics, average and variance, of microwave photons of ill-defined frequency.
We report the observation of quantum steering by the tunnel junction, and show how the presence of squeezing of a broadband mode implies the existence of entanglement between two modes it encompasses.
- Score: 30.38539960317671
- License:
- Abstract: We report measurements of counting statistics, average and variance, of microwave photons of ill-defined frequency : bichromatic photons, i.e. photons involving two well separated frequencies, and "white" broadband photons. Our setup allows for the analysis of single photonic modes of arbitrary waveform over the 1-10 GHz frequency range. The photon statistics are obtained by on-the-fly numerical calculation from the sampled time-dependent voltage. Using an ac+dc biased tunnel junction as a source of quantum microwave, we report an ultra-wide squeezing spectrum representing a competitive source for entanglement generation (up to 0.9 billion measured entangled bits per second) easily achievable experimentally. We also report the observation of quantum steering by the tunnel junction, and show how the presence of squeezing of a broadband mode implies the existence of entanglement between two modes it encompasses.
Related papers
- Integrated, bright, broadband parametric down-conversion source for
quantum metrology and spectroscopy [0.0]
In this work we demonstrate an integrated two-colour SPDC source utilising a group-velocity matched lithium niobate waveguide.
By converting a narrow band pump to broadband pulses the created photon pairs show correlation times of $Delta tau approx 120,textfs$ while maintaining the narrow bandwidth $Delta omega_p ll 1,textMHz$ of the CW pump light, yielding strong time-frequency entanglement.
arXiv Detail & Related papers (2024-02-27T13:57:16Z) - Photonic quantum information processing using the frequency continuous-variable of single photons [0.0]
We show that the richness of two-photon interferometry extends to the realm of time-frequency interferometry.
We introduce an interferometric strategy using a frequency engineered two-photon state allowing to reach Heisenberg scaling for phase estimation.
arXiv Detail & Related papers (2024-02-10T14:31:22Z) - Low-noise Balanced Homodyne Detection with Superconducting Nanowire
Single-Photon Detectors [0.0]
Superconducting nanowire single-photon detectors (SNSPDs) have been widely used to study the discrete nature of quantum states of light.
We show that SNSPDs can also be used to study continuous variables of optical quantum states by performing homodyne detection at a bandwidth of $400mathrmkHz$.
arXiv Detail & Related papers (2023-07-31T13:47:45Z) - Photon emission statistics of a driven microwave cavity [0.0]
We investigate theoretically the statistics of photons emitted from a microwave cavity driven resonantly by an external field.
We employ a Lindblad master equation dressed with counting fields to obtain the generating function of the photon emission statistics.
In the long-time limit, we analyze the factorial cumulants of the photon emission statistics and the large-deviation statistics of the emission currents.
arXiv Detail & Related papers (2023-05-03T09:09:00Z) - Microwave photon-number amplification [0.0]
Single photon detectors accurately detect single photons, but saturate as soon as two photons arrive simultaneously.
More linear watt meters, such as bolometers, are too noisy to accurately detect single microwave photons.
We demonstrate a microwave photon-multiplication scheme which combines the advantages of a single photon detector and a power meter by multiplying the incoming photon number by an integer factor.
arXiv Detail & Related papers (2023-03-06T14:42:01Z) - Quantum fluctuations in the small Fabry-Perot interferometer [77.34726150561087]
We study the small, of the size of the order of the wavelength, interferometer with the main mode excited by a quantum field from a nano-LED or a laser.
We find the field and the photon number fluctuation spectra inside and outside the interferometer.
Results help the study, design, manufacture, and use small elements of quantum optical integrated circuits.
arXiv Detail & Related papers (2022-12-27T10:02:25Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Telecom-band Hyperentangled Photon Pairs from a Fiber-based Source [49.06242674127539]
We experimentally demonstrate the generation of telecom-band biphotons hyperentangled in both the polarization and frequency DoFs.
The states produced by our hyperentanglement source can enable protocols such as dense coding and high-dimensional quantum key distribution.
arXiv Detail & Related papers (2021-12-06T21:37:43Z) - Tunable Anderson Localization of Dark States [146.2730735143614]
We experimentally study Anderson localization in a superconducting waveguide quantum electrodynamics system.
We observe an exponential suppression of the transmission coefficient in the vicinity of its subradiant dark modes.
The experiment opens the door to the study of various localization phenomena on a new platform.
arXiv Detail & Related papers (2021-05-25T07:52:52Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.