Deep learning-based auto-segmentation of paraganglioma for growth monitoring
- URL: http://arxiv.org/abs/2404.07952v1
- Date: Tue, 19 Mar 2024 14:08:56 GMT
- Title: Deep learning-based auto-segmentation of paraganglioma for growth monitoring
- Authors: E. M. C. Sijben, J. C. Jansen, M. de Ridder, P. A. N. Bosman, T. Alderliesten,
- Abstract summary: We propose an automated tumor volume measurement method based on a deep learning segmentation model using no-new-UNnet (nnUNet)
We assess the performance of the model based on visual inspection by a senior otorhinolaryngologist and several quantitative metrics.
Using the created model, and a linking procedure that we propose to track the tumor over time, we show how additional volume measurements affect the fit of known growth functions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Volume measurement of a paraganglioma (a rare neuroendocrine tumor that typically forms along major blood vessels and nerve pathways in the head and neck region) is crucial for monitoring and modeling tumor growth in the long term. However, in clinical practice, using available tools to do these measurements is time-consuming and suffers from tumor-shape assumptions and observer-to-observer variation. Growth modeling could play a significant role in solving a decades-old dilemma (stemming from uncertainty regarding how the tumor will develop over time). By giving paraganglioma patients treatment, severe symptoms can be prevented. However, treating patients who do not actually need it, comes at the cost of unnecessary possible side effects and complications. Improved measurement techniques could enable growth model studies with a large amount of tumor volume data, possibly giving valuable insights into how these tumors develop over time. Therefore, we propose an automated tumor volume measurement method based on a deep learning segmentation model using no-new-UNnet (nnUNet). We assess the performance of the model based on visual inspection by a senior otorhinolaryngologist and several quantitative metrics by comparing model outputs with manual delineations, including a comparison with variation in manual delineation by multiple observers. Our findings indicate that the automatic method performs (at least) equal to manual delineation. Finally, using the created model, and a linking procedure that we propose to track the tumor over time, we show how additional volume measurements affect the fit of known growth functions.
Related papers
- Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - Integration of Graph Neural Network and Neural-ODEs for Tumor Dynamic Prediction [4.850774880198265]
We propose a graph encoder that utilizes a bipartite Graph Convolutional Neural network (GCN) combined with Neural Ordinary Differential Equations (Neural-ODEs)
We first show that the methodology is able to discover a tumor dynamic model that significantly improves upon an empirical model.
Our findings indicate that the methodology holds significant promise and offers potential applications in pre-clinical settings.
arXiv Detail & Related papers (2023-10-02T06:39:08Z) - Treatment-aware Diffusion Probabilistic Model for Longitudinal MRI
Generation and Diffuse Glioma Growth Prediction [0.5806504980491878]
We present a novel end-to-end network capable of generating future tumor masks and realistic MRIs of how the tumor will look at any future time points.
Our approach is based on cutting-edge diffusion probabilistic models and deep-segmentation neural networks.
arXiv Detail & Related papers (2023-09-11T12:12:52Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
We present a deep learning-based brain tumor recurrence location prediction network.
We first train a multi-modal brain tumor segmentation network on the public dataset BraTS 2021.
Then, the pre-trained encoder is transferred to our private dataset for extracting the rich semantic features.
Two decoders are constructed to jointly segment the present brain tumor and predict its future tumor recurrence location.
arXiv Detail & Related papers (2023-04-11T02:45:38Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Deep learning automates bidimensional and volumetric tumor burden
measurement from MRI in pre- and post-operative glioblastoma patients [2.4199968850337354]
We propose a deep learning pipeline for the fully automated end-to-end analysis of glioblastoma patients.
Our approach simultaneously identifies tumor sub-regions, including the enhancing tumor, peritumoral edema and surgical cavity.
Our pipeline performs accurate segmentation of pre- and post-operative MRIs in a fraction of the manual delineation time.
arXiv Detail & Related papers (2022-09-03T11:41:42Z) - Breast Cancer Induced Bone Osteolysis Prediction Using Temporal
Variational Auto-Encoders [65.95959936242993]
We develop a deep learning framework that can accurately predict and visualize the progression of osteolytic bone lesions.
It will assist in planning and evaluating treatment strategies to prevent skeletal related events (SREs) in breast cancer patients.
arXiv Detail & Related papers (2022-03-20T21:00:10Z) - Deep Learning for Reaction-Diffusion Glioma Growth Modelling: Towards a
Fully Personalised Model? [0.2609639566830968]
Reaction-diffusion models have been proposed for decades to capture the growth of gliomas.
Deep convolutional neural networks (DCNNs) can address the pitfalls commonly encountered in the field.
This approach may open the perspective of a clinical application of reaction-diffusion growth models for tumour prognosis and treatment planning.
arXiv Detail & Related papers (2021-11-26T10:16:57Z) - Learn-Morph-Infer: a new way of solving the inverse problem for brain
tumor modeling [1.1214822628210914]
We introduce a methodology for inferring patient-specific spatial distribution of brain tumor from T1Gd and FLAIR MRI medical scans.
Coined as itLearn-Morph-Infer, the method achieves real-time performance in the order of minutes on widely available hardware.
arXiv Detail & Related papers (2021-11-07T13:45:35Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.