論文の概要: FedAuxHMTL: Federated Auxiliary Hard-Parameter Sharing Multi-Task Learning for Network Edge Traffic Classification
- arxiv url: http://arxiv.org/abs/2404.08028v1
- Date: Thu, 11 Apr 2024 16:23:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-15 16:44:18.100426
- Title: FedAuxHMTL: Federated Auxiliary Hard-Parameter Sharing Multi-Task Learning for Network Edge Traffic Classification
- Title(参考訳): FedAuxHMTL:ネットワークエッジトラフィック分類のためのマルチタスク学習のための補助ハードパラメータ共有
- Authors: Faisal Ahmed, Myungjin Lee, Suresh Subramaniam, Motoharu Matsuura, Hiroshi Hasegawa, Shih-Chun Lin,
- Abstract要約: 本稿では,FedAuxHMTLという,多タスク学習のための補助的ハードパラメータ共有フレームワークを提案する。
エッジサーバとベースステーション間のモデルパラメータ交換を取り入れ、分散領域のベースステーションがFedAuxHMTLプロセスに参加することを可能にする。
実験により,FedAuxHMTLの有効性を,精度,全地球的損失,通信コスト,計算時間,エネルギー消費の観点から検証し,実証した。
- 参考スコア(独自算出の注目度): 9.816810723612653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) has garnered significant interest recently due to its potential as an effective solution for tackling many challenges in diverse application scenarios, for example, data privacy in network edge traffic classification. Despite its recognized advantages, FL encounters obstacles linked to statistical data heterogeneity and labeled data scarcity during the training of single-task models for machine learning-based traffic classification, leading to hindered learning performance. In response to these challenges, adopting a hard-parameter sharing multi-task learning model with auxiliary tasks proves to be a suitable approach. Such a model has the capability to reduce communication and computation costs, navigate statistical complexities inherent in FL contexts, and overcome labeled data scarcity by leveraging knowledge derived from interconnected auxiliary tasks. This paper introduces a new framework for federated auxiliary hard-parameter sharing multi-task learning, namely, FedAuxHMTL. The introduced framework incorporates model parameter exchanges between edge server and base stations, enabling base stations from distributed areas to participate in the FedAuxHMTL process and enhance the learning performance of the main task-network edge traffic classification. Empirical experiments are conducted to validate and demonstrate the FedAuxHMTL's effectiveness in terms of accuracy, total global loss, communication costs, computing time, and energy consumption compared to its counterparts.
- Abstract(参考訳): フェデレートラーニング(FL)は最近、ネットワークエッジトラフィックの分類におけるデータプライバシなど、さまざまなアプリケーションシナリオにおける多くの課題に対処するための効果的なソリューションとしての可能性から、大きな関心を集めている。
その利点は認識されているが、FLは、機械学習ベースのトラフィック分類のためのシングルタスクモデルのトレーニング中に、統計データの異質性とラベル付きデータの不足に関連する障害に遭遇し、学習性能を損なう。
これらの課題に対応するために、補助的なタスクを伴うハードパラメータ共有マルチタスク学習モデルを採用すれば、適切なアプローチであることが証明できる。
このようなモデルは、通信と計算のコストを削減し、FLコンテキストに固有の統計的複雑さをナビゲートし、相互接続された補助タスクに由来する知識を活用してラベル付きデータの不足を克服する能力を持つ。
本稿では,FedAuxHMTLという,多タスク学習のための統合型ハードパラメータ共有フレームワークを提案する。
このフレームワークは、エッジサーバとベースステーション間のモデルパラメータ交換を取り入れ、分散領域の基地局がFedAuxHMTLプロセスに参加できるようにし、メインタスク-ネットワークエッジトラフィック分類の学習性能を向上させる。
また,FedAuxHMTLの有効性を,FedAuxHMTLの精度,全地球的損失,通信コスト,計算時間,エネルギー消費の観点から検証し,実証する実験を行った。
関連論文リスト
- Meta-Statistical Learning: Supervised Learning of Statistical Inference [59.463430294611626]
この研究は、大きな言語モデル(LLM)の成功を駆動するツールと原則が、分散レベルのタスクに取り組むために再利用可能であることを実証している。
本稿では,統計的推論タスクを教師付き学習問題として再構成するマルチインスタンス学習に触発されたメタ統計学習を提案する。
論文 参考訳(メタデータ) (2025-02-17T18:04:39Z) - Empowering Large Language Models in Wireless Communication: A Novel Dataset and Fine-Tuning Framework [81.29965270493238]
我々は,無線通信アプリケーションのための大規模言語モデル(LLM)の評価と微調整を目的とした,特殊なデータセットを開発した。
データセットには、真/偽と複数選択型を含む、さまざまなマルチホップ質問が含まれている。
本稿では,PVI(Pointwise V-Information)に基づく微調整手法を提案する。
論文 参考訳(メタデータ) (2025-01-16T16:19:53Z) - Over-the-Air Fair Federated Learning via Multi-Objective Optimization [52.295563400314094]
本稿では,公平なFLモデルを訓練するためのOTA-FFL(Over-the-air Fair Federated Learning Algorithm)を提案する。
OTA-FFLの公正性とロバストな性能に対する優位性を示す実験を行った。
論文 参考訳(メタデータ) (2025-01-06T21:16:51Z) - Load Balancing in Federated Learning [3.2999744336237384]
Federated Learning(FL)は、複数のリモートデバイスに分散したデータからの学習を可能にする、分散機械学習フレームワークである。
本稿では,情報時代に基づくスケジューリングポリシーの負荷指標を提案する。
マルコフ連鎖モデルの最適パラメータを確立し、シミュレーションによりアプローチを検証する。
論文 参考訳(メタデータ) (2024-08-01T00:56:36Z) - Non-Federated Multi-Task Split Learning for Heterogeneous Sources [17.47679789733922]
異種データソースのマルチタスク学習を効率的に行うための新しいアーキテクチャと方法論を提案する。
MTSLは,サーバとクライアントの学習率を調整することで,高速収束を実現することができることを示す。
論文 参考訳(メタデータ) (2024-05-31T19:27:03Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
フェデレートラーニング(Federated Learning)は、分散機械学習の手法である。
我々は,AMSGradの異種局所変種であるFedLALRを提案し,各クライアントが学習率を調整する。
クライアントが指定した自動調整型学習率スケジューリングが,クライアント数に対して収束し,線形高速化を実現することを示す。
論文 参考訳(メタデータ) (2023-09-18T12:35:05Z) - Time-sensitive Learning for Heterogeneous Federated Edge Intelligence [52.83633954857744]
フェデレーションエッジインテリジェンス(FEI)システムにおけるリアルタイム機械学習について検討する。
FEIシステムは異種通信と計算資源分布を示す。
本稿では,共有MLモデルの協調学習における全体の実行時間を最小化するために,時間依存型フェデレーションラーニング(TS-FL)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-26T08:13:22Z) - Spatio-Temporal Federated Learning for Massive Wireless Edge Networks [23.389249751372393]
エッジサーバと多数のモバイルデバイス(クライアント)は、モバイルデバイスが収集した膨大なデータをエッジサーバに転送することなく、グローバルモデルを共同で学習する。
提案手法は,STFLに参加する予定の様々なモバイルデバイスからの学習更新の空間的および時間的相関を利用している。
収束性能を用いてSTFLの学習能力を研究するために,STFLの分析フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-27T16:46:45Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
協調学習技術のパラダイムとしてのフェデレートラーニング(FL)は研究の注目を集めている。
無線システム上での高速応答および高精度FLスキームの検証が重要である。
提案する通信効率のよいフェデレーション学習フレームワークは,強い線形速度で収束することを示す。
論文 参考訳(メタデータ) (2021-10-22T13:25:57Z) - Communication-Efficient Hierarchical Federated Learning for IoT
Heterogeneous Systems with Imbalanced Data [42.26599494940002]
フェデレートラーニング(Federated Learning, FL)は、複数のノードが協調してディープラーニングモデルをトレーニングできる分散ラーニング方法論である。
本稿では,IoTヘテロジニアスシステムにおける階層FLの可能性について検討する。
複数のエッジノード上でのユーザ割り当てとリソース割り当てに最適化されたソリューションを提案する。
論文 参考訳(メタデータ) (2021-07-14T08:32:39Z) - Ternary Compression for Communication-Efficient Federated Learning [17.97683428517896]
フェデレートされた学習は、プライバシ保護とセキュアな機械学習に対する潜在的なソリューションを提供する。
本稿では,第3次フェデレーション平均化プロトコル(T-FedAvg)を提案する。
その結果,提案したT-FedAvgは通信コストの低減に有効であり,非IIDデータの性能も若干向上できることがわかった。
論文 参考訳(メタデータ) (2020-03-07T11:55:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。