論文の概要: Data-Augmentation-Based Dialectal Adaptation for LLMs
- arxiv url: http://arxiv.org/abs/2404.08092v1
- Date: Thu, 11 Apr 2024 19:15:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-15 16:34:33.642828
- Title: Data-Augmentation-Based Dialectal Adaptation for LLMs
- Title(参考訳): LLMのためのデータ拡張に基づく辞書適応
- Authors: Fahim Faisal, Antonios Anastasopoulos,
- Abstract要約: 本稿では, GMUNLPによるVarDial 2024におけるDialect-Copa共有タスクへの参加について述べる。
この課題は、南スラヴ語のマイクロディレクト上での大規模言語モデル(LLM)の常識推論能力を評価することに焦点を当てている。
本稿では,異なるタイプの言語モデルの強みを組み合わせ,データ拡張技術を活用してタスク性能を向上させる手法を提案する。
- 参考スコア(独自算出の注目度): 26.72394783468532
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This report presents GMUNLP's participation to the Dialect-Copa shared task at VarDial 2024, which focuses on evaluating the commonsense reasoning capabilities of large language models (LLMs) on South Slavic micro-dialects. The task aims to assess how well LLMs can handle non-standard dialectal varieties, as their performance on standard languages is already well-established. We propose an approach that combines the strengths of different types of language models and leverages data augmentation techniques to improve task performance on three South Slavic dialects: Chakavian, Cherkano, and Torlak. We conduct experiments using a language-family-focused encoder-based model (BERTi\'c) and a domain-agnostic multilingual model (AYA-101). Our results demonstrate that the proposed data augmentation techniques lead to substantial performance gains across all three test datasets in the open-source model category. This work highlights the practical utility of data augmentation and the potential of LLMs in handling non-standard dialectal varieties, contributing to the broader goal of advancing natural language understanding in low-resource and dialectal settings. Code:https://github.com/ffaisal93/dialect_copa
- Abstract(参考訳): 本稿では,大言語モデル(LLM)が南スラヴ語マイクロダイアレクト上での常識推論能力を評価することに焦点を当てた,VarDial 2024におけるDialect-Copa共有タスクへのGMUNLPの参加について述べる。
この課題は、標準言語の性能がすでに確立されているため、LLMが標準方言の変種をいかにうまく扱えるかを評価することを目的としている。
本稿では,異なる種類の言語モデルの強みを組み合わせ,データ拡張技術を活用して3つの南スラヴ方言(Chakavian, Cherkano, Torlak)のタスクパフォーマンスを向上させるアプローチを提案する。
言語に焦点をあてたエンコーダモデル(BERTi\'c)とドメインに依存しない多言語モデル(AYA-101)を用いて実験を行う。
その結果,提案手法は,オープンソースモデルカテゴリの3つのテストデータセットすべてに対して,大幅な性能向上をもたらすことが示された。
この研究は、低リソースおよび方言設定における自然言語理解の促進という、より広範な目標に寄与する、非標準方言変種を扱う上で、データ拡張の実用性とLLMの可能性を強調した。
コード:https://github.com/ffaisal93/dialect_copa
関連論文リスト
- Language Portability Strategies for Open-domain Dialogue with Pre-trained Language Models from High to Low Resource Languages [1.7436854281619139]
オープンドメイン対話システムに使用される大規模事前学習言語モデル(PLM)の言語ポータビリティ戦略について検討する。
特に、ターゲットの低リソース言語(L_T)は、タスク固有のリソースがないため、フランス語でシミュレートされる。
論文 参考訳(メタデータ) (2024-07-01T14:20:54Z) - Bridging the Bosphorus: Advancing Turkish Large Language Models through Strategies for Low-Resource Language Adaptation and Benchmarking [1.3716808114696444]
大規模言語モデル(LLM)は様々な分野において重要になってきており、表現不足の言語における高品質なモデルの緊急性を強調している。
本研究では、データ不足、モデル選択、評価、計算制限など、低リソース言語が直面する固有の課題について検討する。
論文 参考訳(メタデータ) (2024-05-07T21:58:45Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
最先端自然言語処理(NLP)モデルは、大規模なトレーニングコーパスでトレーニングされ、評価データセットで最上位のパフォーマンスを報告します。
この調査は、これらのデータセットの重要な属性である言語の方言を掘り下げる。
方言データセットに対するNLPモデルの性能劣化と言語技術のエクイティへのその影響を動機として,我々はデータセットやアプローチの観点から,方言に対するNLPの過去の研究を調査した。
論文 参考訳(メタデータ) (2024-01-11T03:04:38Z) - GlotLID: Language Identification for Low-Resource Languages [51.38634652914054]
GlotLID-M は広い範囲、信頼性、効率性のデシラタを満たす LID モデルである。
1665の言語を識別し、以前の作業に比べてカバー範囲が大幅に増加した。
論文 参考訳(メタデータ) (2023-10-24T23:45:57Z) - GradSim: Gradient-Based Language Grouping for Effective Multilingual
Training [13.730907708289331]
勾配類似度に基づく言語グループ化手法GradSimを提案する。
3つの多言語ベンチマークデータセットに対する実験により、最大のパフォーマンス向上につながることが示された。
言語的特徴の他に、データセットのトピックは言語グループ化において重要な役割を果たす。
論文 参考訳(メタデータ) (2023-10-23T18:13:37Z) - The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants [80.4837840962273]
私たちは122の言語変種にまたがるデータセットであるBelebeleを紹介します。
このデータセットは、高、中、低リソース言語におけるテキストモデルの評価を可能にする。
論文 参考訳(メタデータ) (2023-08-31T17:43:08Z) - Improving Massively Multilingual ASR With Auxiliary CTC Objectives [40.10307386370194]
FLEURSは102言語によるオープンASRベンチマークである。
我々は,最近のコネクショニスト時間分類(CTC)研究から着想を得た手法を考察し,モデルが多数の言語を扱えるようにした。
コンバータアーキテクチャを用いた自己教師型モデルを用いた最先端システムでは,相対28.4%CERによるFLEURSの先行研究よりも改善されている。
論文 参考訳(メタデータ) (2023-02-24T18:59:51Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
言語間機械読解(CLMRC)は、ローソース言語に大規模なデータセットがないため、依然として難しい問題である。
本稿では,Language Branch Machine Reading (LBMRC) という新しい拡張手法を提案する。
LBMRCは、個々の言語に精通したMultiple Machine Read comprehension (MRC)モデルを訓練する。
複数の言語分岐モデルから全ての対象言語に対する単一モデルへのアマルガメート知識の多言語蒸留アプローチを考案する。
論文 参考訳(メタデータ) (2020-10-27T13:12:17Z) - XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning [68.57658225995966]
XCOPA (Cross-lingual Choice of Plausible Alternatives) は11言語における因果コモンセンス推論のための多言語データセットである。
提案手法は,翻訳に基づく転送と比較して,現在の手法の性能が低下していることを明らかにする。
論文 参考訳(メタデータ) (2020-05-01T12:22:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。