Towards a Robust Soft Baby Robot With Rich Interaction Ability for Advanced Machine Learning Algorithms
- URL: http://arxiv.org/abs/2404.08093v2
- Date: Wed, 04 Dec 2024 14:45:23 GMT
- Title: Towards a Robust Soft Baby Robot With Rich Interaction Ability for Advanced Machine Learning Algorithms
- Authors: Mohannad Alhakami, Dylan R. Ashley, Joel Dunham, Yanning Dai, Francesco Faccio, Eric Feron, Jürgen Schmidhuber,
- Abstract summary: We present a novel robotic limb designed from scratch to handle advanced machine learning algorithms.
Our design has a hybrid soft-hard structure, high redundancy with rich non-contact sensors (exclusively cameras) and easily replaceable failure points.
We believe this design represents a concrete step toward more tailored robotic designs for achieving general-purpose, generally intelligent robots.
- Score: 24.623734020960633
- License:
- Abstract: Advanced machine learning algorithms require platforms that are extremely robust and equipped with rich sensory feedback to handle extensive trial-and-error learning without relying on strong inductive biases. Traditional robotic designs, while well-suited for their specific use cases, are often fragile when used with these algorithms. To address this gap -- and inspired by the vision of enabling curiosity-driven baby robots -- we present a novel robotic limb designed from scratch. Our design has a hybrid soft-hard structure, high redundancy with rich non-contact sensors (exclusively cameras), and easily replaceable failure points. Proof-of-concept experiments using two contemporary reinforcement learning algorithms on a physical prototype demonstrate that our design is able to succeed in a simple target-finding task even under simulated sensor failures, all with minimal human oversight during extended learning periods. We believe this design represents a concrete step toward more tailored robotic designs for achieving general-purpose, generally intelligent robots.
Related papers
- Deep Learning based Quasi-consciousness Training for Robot Intelligent Model [0.6916967405051087]
This paper explores a deep learning based robot intelligent model that renders robots learn and reason for complex tasks.
Every robot must be subjected to at least 13 years of special school for training anthropomorphic behaviour patterns.
arXiv Detail & Related papers (2025-01-31T08:27:32Z) - A Retrospective on the Robot Air Hockey Challenge: Benchmarking Robust, Reliable, and Safe Learning Techniques for Real-world Robotics [53.33976793493801]
We organized the Robot Air Hockey Challenge at the NeurIPS 2023 conference.
We focus on practical challenges in robotics, such as the sim-to-real gap, low-level control issues, safety problems, real-time requirements, and the limited availability of real-world data.
Results show that solutions combining learning-based approaches with prior knowledge outperform those relying solely on data when real-world deployment is challenging.
arXiv Detail & Related papers (2024-11-08T17:20:47Z) - Generalized Robot Learning Framework [10.03174544844559]
We present a low-cost robot learning framework that is both easily reproducible and transferable to various robots and environments.
We demonstrate that deployable imitation learning can be successfully applied even to industrial-grade robots.
arXiv Detail & Related papers (2024-09-18T15:34:31Z) - Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
Legged robots are physically capable of navigating a diverse variety of environments and overcoming a wide range of obstructions.
Current learning methods often struggle with generalization to the long tail of unexpected situations without heavy human supervision.
We propose a system, VLM-Predictive Control (VLM-PC), combining two key components that we find to be crucial for eliciting on-the-fly, adaptive behavior selection.
arXiv Detail & Related papers (2024-07-02T21:00:30Z) - RoboCodeX: Multimodal Code Generation for Robotic Behavior Synthesis [102.1876259853457]
We propose a tree-structured multimodal code generation framework for generalized robotic behavior synthesis, termed RoboCodeX.
RoboCodeX decomposes high-level human instructions into multiple object-centric manipulation units consisting of physical preferences such as affordance and safety constraints.
To further enhance the capability to map conceptual and perceptual understanding into control commands, a specialized multimodal reasoning dataset is collected for pre-training and an iterative self-updating methodology is introduced for supervised fine-tuning.
arXiv Detail & Related papers (2024-02-25T15:31:43Z) - Exploring the effects of robotic design on learning and neural control [0.0]
dissertation focuses on the development of robotic bodies, rather than neural controllers.
I have discovered that robots can be designed such that they overcome many of the current pitfalls encountered by neural controllers in multitask settings.
arXiv Detail & Related papers (2023-06-06T15:17:34Z) - Evolution Gym: A Large-Scale Benchmark for Evolving Soft Robots [29.02903745467536]
We propose Evolution Gym, the first large-scale benchmark for co-optimizing the design and control of soft robots.
Our benchmark environments span a wide range of tasks, including locomotion on various types of terrains and manipulation.
We develop several robot co-evolution algorithms by combining state-of-the-art design optimization methods and deep reinforcement learning techniques.
arXiv Detail & Related papers (2022-01-24T18:39:22Z) - From Machine Learning to Robotics: Challenges and Opportunities for
Embodied Intelligence [113.06484656032978]
Article argues that embodied intelligence is a key driver for the advancement of machine learning technology.
We highlight challenges and opportunities specific to embodied intelligence.
We propose research directions which may significantly advance the state-of-the-art in robot learning.
arXiv Detail & Related papers (2021-10-28T16:04:01Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
Many multi-task reinforcement learning efforts assume the robot can collect data from all tasks at all times.
In this work, we study a practical sequential multi-task RL problem motivated by the practical constraints of physical robotic systems.
We derive an approach that effectively leverages the data and policies learned for previous tasks to cumulatively grow the robot's skill-set.
arXiv Detail & Related papers (2021-09-19T18:00:51Z) - Curiosity Based Reinforcement Learning on Robot Manufacturing Cell [0.0]
Reinforcement learning has proved to be highly successful in solving tasks like robotics and scheduling.
This paper introduces a novel combination of scheduling control on a flexible robot manufacturing cell with curiosity based reinforcement learning.
arXiv Detail & Related papers (2020-11-17T16:19:47Z) - Task-relevant Representation Learning for Networked Robotic Perception [74.0215744125845]
This paper presents an algorithm to learn task-relevant representations of sensory data that are co-designed with a pre-trained robotic perception model's ultimate objective.
Our algorithm aggressively compresses robotic sensory data by up to 11x more than competing methods.
arXiv Detail & Related papers (2020-11-06T07:39:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.