論文の概要: Auctions with LLM Summaries
- arxiv url: http://arxiv.org/abs/2404.08126v1
- Date: Thu, 11 Apr 2024 21:05:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-15 16:24:45.383470
- Title: Auctions with LLM Summaries
- Title(参考訳): LLMサマリーによるオークション
- Authors: Kumar Avinava Dubey, Zhe Feng, Rahul Kidambi, Aranyak Mehta, Di Wang,
- Abstract要約: 本研究では,大言語モデル(LLM)が生成した要約の中に,入札者がコンテンツの配置を入札するオークション環境について検討する。
本稿では,オークションモジュールとLLMモジュールが協調して動作する新しい因子化フレームワークを提案する。
- 参考スコア(独自算出の注目度): 13.797878055583531
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study an auction setting in which bidders bid for placement of their content within a summary generated by a large language model (LLM), e.g., an ad auction in which the display is a summary paragraph of multiple ads. This generalizes the classic ad settings such as position auctions to an LLM generated setting, which allows us to handle general display formats. We propose a novel factorized framework in which an auction module and an LLM module work together via a prediction model to provide welfare maximizing summary outputs in an incentive compatible manner. We provide a theoretical analysis of this framework and synthetic experiments to demonstrate the feasibility and validity of the system together with welfare comparisons.
- Abstract(参考訳): 本稿では,大規模言語モデル(LLM),eg,ディスプレイが複数の広告の要約段落である広告オークションによって生成された要約の中に,入札者がその内容の配置を入札するオークションについて検討する。
これにより、位置オークションのような古典的な広告設定をLCM生成設定に一般化し、一般的な表示形式を処理できる。
本稿では,オークションモジュールとLCMモジュールが協調して動作し,インセンティブに適合する形で要約出力を最大化する,新たな因子化フレームワークを提案する。
本稿では,この枠組みの理論的解析と合成実験を行い,福祉比較とともにシステムの実現可能性と妥当性を実証する。
関連論文リスト
- DaRec: A Disentangled Alignment Framework for Large Language Model and Recommender System [83.34921966305804]
大規模言語モデル (LLM) はレコメンデーションシステムにおいて顕著な性能を示した。
LLMと協調モデルのための新しいプラグ・アンド・プレイアライメントフレームワークを提案する。
我々の手法は既存の最先端アルゴリズムよりも優れている。
論文 参考訳(メタデータ) (2024-08-15T15:56:23Z) - Ad Auctions for LLMs via Retrieval Augmented Generation [12.9128551468564]
本稿では,大規模言語モデル(LLM)のテキスト出力における広告アロケーションと価格設定のための新しいオークション機構を提案する。
RAGフレームワークに従って,各談話セグメントに対して広告を確率的に検索するセグメントオークションを提案する。
我々は,配分効率と公平性のバランスをとる福祉の新しい概念である対数社会福祉を最大化することを示し,関連するインセンティブに適合する価格設定を特徴付ける。
論文 参考訳(メタデータ) (2024-06-12T22:05:51Z) - Show, Don't Tell: Aligning Language Models with Demonstrated Feedback [54.10302745921713]
Demonstration ITerated Task Optimization (DITTO)は、言語モデルの出力とユーザの実証された振る舞いを直接調整する。
我々は,DITTOがニュース記事やメール,ブログ記事などのドメイン間できめ細かいスタイルやタスクアライメントを学習する能力を評価する。
論文 参考訳(メタデータ) (2024-06-02T23:13:56Z) - Enhancing Presentation Slide Generation by LLMs with a Multi-Staged End-to-End Approach [21.8104104944488]
ドキュメントからリッチなプレゼンテーションを生成するための既存のアプローチは、しばしば半自動的であるか、良い物語の重要性を無視してスライドに平らな要約を配置するだけである。
LLMとVLMを組み合わせた多段階のエンドツーエンドモデルを提案する。
我々は,LLMを最先端のプロンプトで直接適用するよりも,自動計測と人的評価の点で,提案した多段階ソリューションの方が優れていることを実験的に示した。
論文 参考訳(メタデータ) (2024-06-01T07:49:31Z) - Multi-modal Auto-regressive Modeling via Visual Words [96.25078866446053]
本稿では,視覚的特徴を大規模多モードモデルの語彙上の確率分布にマッピングする視覚トークンの概念を提案する。
さらに、LMM内の意味空間における視覚的特徴の分布と、視覚情報を表現するためにテキスト埋め込みを使用することの可能性について検討する。
論文 参考訳(メタデータ) (2024-03-12T14:58:52Z) - Routing to the Expert: Efficient Reward-guided Ensemble of Large
Language Models [69.51130760097818]
本研究では,報奨誘導型ルーティング手法であるZooterを提案する。
さまざまなドメインやタスクについて26のサブセットを持つ総合的なベンチマークコレクション上でZooterを評価する。
論文 参考訳(メタデータ) (2023-11-15T04:40:43Z) - Online Advertisements with LLMs: Opportunities and Challenges [51.96140910798771]
本稿では,オンライン広告システムにおけるLarge Language Models(LLM)の活用の可能性について検討する。
提案手法は,LLM広告の修正,入札,予測,オークションモジュールから構成される。
論文 参考訳(メタデータ) (2023-11-11T02:13:32Z) - LLMs Understand Glass-Box Models, Discover Surprises, and Suggest
Repairs [10.222281712562705]
大規模言語モデル(LLM)は解釈可能なモデルを扱うのに非常に優れていることを示す。
推論に階層的なアプローチを採用することで、LLMは包括的なモデルレベルの要約を提供することができる。
パッケージ $textttTalkToEBM$ をオープンソース LLM-GAM インターフェースとして提示する。
論文 参考訳(メタデータ) (2023-08-02T13:59:35Z) - mPLUG-Owl: Modularization Empowers Large Language Models with Multimodality [95.76661165594884]
mPLUG-Owlは、大規模言語モデル(LLM)にマルチモーダル能力を持たせる訓練パラダイムである。
トレーニングパラダイムは、LLMの助けを借りて視覚知識を学ぶ、画像とテキストの整列のための2段階の手法を含む。
実験の結果,本モデルは既存のマルチモーダルモデルよりも優れていた。
論文 参考訳(メタデータ) (2023-04-27T13:27:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。