Uncertain Boundaries: Multidisciplinary Approaches to Copyright Issues in Generative AI
- URL: http://arxiv.org/abs/2404.08221v2
- Date: Sun, 29 Jun 2025 19:41:33 GMT
- Title: Uncertain Boundaries: Multidisciplinary Approaches to Copyright Issues in Generative AI
- Authors: Archer Amon, Zhipeng Yin, Zichong Wang, Avash Palikhe, Wenbin Zhang,
- Abstract summary: Generative AI models generating near-replicas of copyrighted material highlight the need to adapt current legal frameworks.<n>Most existing research on copyright in AI takes a purely computer science or law-based approach.<n>This survey adopts a comprehensive approach synthesizing insights from law, policy, economics, and computer science.
- Score: 2.2780130786778665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative AI is becoming increasingly prevalent in creative fields, sparking urgent debates over how current copyright laws can keep pace with technological innovation. Recent controversies of AI models generating near-replicas of copyrighted material highlight the need to adapt current legal frameworks and develop technical methods to mitigate copyright infringement risks. This task requires understanding the intersection between computational concepts such as large-scale data scraping and probabilistic content generation, legal definitions of originality and fair use, and economic impacts on IP rights holders. However, most existing research on copyright in AI takes a purely computer science or law-based approach, leaving a gap in coordinating these approaches that only multidisciplinary efforts can effectively address. To bridge this gap, our survey adopts a comprehensive approach synthesizing insights from law, policy, economics, and computer science. It begins by discussing the foundational goals and considerations that should be applied to copyright in generative AI, followed by methods for detecting and assessing potential violations in AI system outputs. Next, it explores various regulatory options influenced by legal, policy, and economic frameworks to manage and mitigate copyright concerns associated with generative AI and reconcile the interests of IP rights holders with that of generative AI producers. The discussion then introduces techniques to safeguard individual creative works from unauthorized replication, such as watermarking and cryptographic protections. Finally, it describes advanced training strategies designed to prevent AI models from reproducing protected content. In doing so, we highlight key opportunities for action and offer actionable strategies that creators, developers, and policymakers can use in navigating the evolving copyright landscape.
Related papers
- From Imitation to Innovation: The Emergence of AI Unique Artistic Styles and the Challenge of Copyright Protection [26.167194142428475]
ArtBulb is an interpretable and quantifiable framework for AI art copyright judgment.<n>We present AICD, the first benchmark dataset for AI art copyright annotated by artists and legal experts.
arXiv Detail & Related papers (2025-07-07T08:45:08Z) - The California Report on Frontier AI Policy [110.35302787349856]
Continued progress in frontier AI carries the potential for profound advances in scientific discovery, economic productivity, and broader social well-being.<n>As the epicenter of global AI innovation, California has a unique opportunity to continue supporting developments in frontier AI.<n>Report derives policy principles that can inform how California approaches the use, assessment, and governance of frontier AI.
arXiv Detail & Related papers (2025-06-17T23:33:21Z) - SoK: Watermarking for AI-Generated Content [112.9218881276487]
Watermarking schemes embed hidden signals within AI-generated content to enable reliable detection.
Watermarks can play a crucial role in enhancing AI safety and trustworthiness by combating misinformation and deception.
This work aims to guide researchers in advancing watermarking methods and applications, and support policymakers in addressing the broader implications of GenAI.
arXiv Detail & Related papers (2024-11-27T16:22:33Z) - Can Watermarking Large Language Models Prevent Copyrighted Text Generation and Hide Training Data? [62.72729485995075]
We investigate the effectiveness of watermarking as a deterrent against the generation of copyrighted texts.
We find that watermarking adversely affects the success rate of Membership Inference Attacks (MIAs)
We propose an adaptive technique to improve the success rate of a recent MIA under watermarking.
arXiv Detail & Related papers (2024-07-24T16:53:09Z) - Evaluating Copyright Takedown Methods for Language Models [100.38129820325497]
Language models (LMs) derive their capabilities from extensive training on diverse data, including potentially copyrighted material.
This paper introduces the first evaluation of the feasibility and side effects of copyright takedowns for LMs.
We examine several strategies, including adding system prompts, decoding-time filtering interventions, and unlearning approaches.
arXiv Detail & Related papers (2024-06-26T18:09:46Z) - Evaluating and Mitigating IP Infringement in Visual Generative AI [54.24196167576133]
State-of-the-art visual generative models can generate content that bears a striking resemblance to characters protected by intellectual property rights.
This happens when the input prompt contains the character's name or even just descriptive details about their characteristics.
We develop a revised generation paradigm that can identify potentially infringing generated content and prevent IP infringement.
arXiv Detail & Related papers (2024-06-07T06:14:18Z) - U Can't Gen This? A Survey of Intellectual Property Protection Methods for Data in Generative AI [4.627725143147341]
We study the concerns regarding the intellectual property rights of training data.
We focus on the properties of generative models that enable misuse leading to potential IP violations.
arXiv Detail & Related papers (2024-04-22T09:09:21Z) - ©Plug-in Authorization for Human Content Copyright Protection in Text-to-Image Model [71.47762442337948]
State-of-the-art models create high-quality content without crediting original creators.
We propose the copyright Plug-in Authorization framework, introducing three operations: addition, extraction, and combination.
Extraction allows creators to reclaim copyright from infringing models, and combination enables users to merge different copyright plug-ins.
arXiv Detail & Related papers (2024-04-18T07:48:00Z) - AI Royalties -- an IP Framework to Compensate Artists & IP Holders for AI-Generated Content [3.4410934027154996]
This article investigates how AI-generated content can disrupt central revenue streams of the creative industries.
It reviews the IP and copyright questions related to the input and output of generative AI systems.
arXiv Detail & Related papers (2024-04-05T15:35:08Z) - Not All Similarities Are Created Equal: Leveraging Data-Driven Biases to Inform GenAI Copyright Disputes [20.237329910319293]
This paper introduces a novel approach that leverages the learning capacity of GenAI models for copyright legal analysis.
We propose a data-driven approach to identify the genericity of works created by GenAI.
The potential implications of measuring expressive genericity for copyright law are profound.
arXiv Detail & Related papers (2024-03-26T13:32:32Z) - Prompting the E-Brushes: Users as Authors in Generative AI [0.0]
The Copyright Office, in its March 2023 Guidance, argues against users of Generative AI being eligible for copyright protection.
This Article challenges this viewpoint and advocates for the recognition of Generative AI users who incorporate these tools into their creative endeavors.
Rather than dismissing the contributions generated by AI, this Article suggests a simplified and streamlined registration process.
arXiv Detail & Related papers (2024-03-25T02:20:14Z) - Generative AI and Copyright: A Dynamic Perspective [0.0]
generative AI is poised to disrupt the creative industry.
The compensation to creators whose content has been used to train generative AI models (the fair use standard) and the eligibility of AI-generated content for copyright protection (AI-copyrightability) are key issues.
This paper aims to better understand the economic implications of these two regulatory issues and their interactions.
arXiv Detail & Related papers (2024-02-27T07:12:48Z) - Copyright Protection in Generative AI: A Technical Perspective [58.84343394349887]
Generative AI has witnessed rapid advancement in recent years, expanding their capabilities to create synthesized content such as text, images, audio, and code.
The high fidelity and authenticity of contents generated by these Deep Generative Models (DGMs) have sparked significant copyright concerns.
This work delves into this issue by providing a comprehensive overview of copyright protection from a technical perspective.
arXiv Detail & Related papers (2024-02-04T04:00:33Z) - A Dataset and Benchmark for Copyright Infringement Unlearning from Text-to-Image Diffusion Models [52.49582606341111]
Copyright law confers creators the exclusive rights to reproduce, distribute, and monetize their creative works.
Recent progress in text-to-image generation has introduced formidable challenges to copyright enforcement.
We introduce a novel pipeline that harmonizes CLIP, ChatGPT, and diffusion models to curate a dataset.
arXiv Detail & Related papers (2024-01-04T11:14:01Z) - Generative AI and US Intellectual Property Law [0.0]
It remains to be seen whether human content creators can retain their intellectual property rights against generative AI software.
Early signs from various courts are mixed as to whether and to what degree the results generated by AI models meet the legal standards of infringement under existing law.
arXiv Detail & Related papers (2023-11-27T17:36:56Z) - Report of the 1st Workshop on Generative AI and Law [78.62063815165968]
This report presents the takeaways of the inaugural Workshop on Generative AI and Law (GenLaw)
A cross-disciplinary group of practitioners and scholars from computer science and law convened to discuss the technical, doctrinal, and policy challenges presented by law for Generative AI.
arXiv Detail & Related papers (2023-11-11T04:13:37Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.