論文の概要: On Input Formats for Radar Micro-Doppler Signature Processing by Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2404.08291v1
- Date: Fri, 12 Apr 2024 07:30:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-15 15:45:46.091173
- Title: On Input Formats for Radar Micro-Doppler Signature Processing by Convolutional Neural Networks
- Title(参考訳): 畳み込みニューラルネットワークによるレーダマイクロドップラー信号処理のための入力フォーマットについて
- Authors: Mikolaj Czerkawski, Carmine Clemente, Craig Michie, Christos Tachtatzis,
- Abstract要約: 位相情報の有用性と畳み込みニューラルネットワークに対するドップラー時間入力の最適なフォーマットを解析する。
畳み込みニューラルネットワーク分類器によって達成された性能は入力表現の種類に大きく影響されている。
- 参考スコア(独自算出の注目度): 1.2499537119440245
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional neural networks have often been proposed for processing radar Micro-Doppler signatures, most commonly with the goal of classifying the signals. The majority of works tend to disregard phase information from the complex time-frequency representation. Here, the utility of the phase information, as well as the optimal format of the Doppler-time input for a convolutional neural network, is analysed. It is found that the performance achieved by convolutional neural network classifiers is heavily influenced by the type of input representation, even across formats with equivalent information. Furthermore, it is demonstrated that the phase component of the Doppler-time representation contains rich information useful for classification and that unwrapping the phase in the temporal dimension can improve the results compared to a magnitude-only solution, improving accuracy from 0.920 to 0.938 on the tested human activity dataset. Further improvement of 0.947 is achieved by training a linear classifier on embeddings from multiple-formats.
- Abstract(参考訳): 畳み込みニューラルネットワークは、しばしばレーダーマイクロドップラーシグネチャを処理するために提案され、最も一般的には信号の分類が目的である。
ほとんどの研究は、複雑な時間周波数表現から位相情報を無視する傾向にある。
ここでは、位相情報の有用性と畳み込みニューラルネットワークに対するドップラー時間入力の最適なフォーマットを解析する。
畳み込みニューラルネットワーク分類器によって達成された性能は、等価な情報を持つフォーマットにわたっても、入力表現の種類に大きく影響されている。
さらに、ドップラー時間表現の位相成分は、分類に有用な豊富な情報を含み、時間次元における位相の切り離しは、マグニチュードのみの解に比べて結果を改善することができ、試験された人間の活動データセット上での精度が0.920から0.938に向上することを示した。
0.947のさらなる改善は、複数形式からの埋め込みに対する線形分類器の訓練によって達成される。
関連論文リスト
- Rolling bearing fault diagnosis method based on generative adversarial enhanced multi-scale convolutional neural network model [7.600902237804825]
マルチスケール畳み込みニューラルネットワークモデルに基づく転がり軸受故障診断手法を提案する。
ResNet法と比較して,提案手法はより優れた一般化性能と反雑音性能を有することを示す。
論文 参考訳(メタデータ) (2024-03-21T06:42:35Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
ニューラルネットワークにおけるエントロピーと相互情報は、学習プロセスに関する豊富な情報を提供する。
データ幾何を利用して基礎となる多様体にアクセスし、これらの情報理論測度を確実に計算する。
本研究は,高次元シミュレーションデータにおける固有次元と関係強度の耐雑音性の測定結果である。
論文 参考訳(メタデータ) (2023-12-04T01:32:42Z) - Time Scale Network: A Shallow Neural Network For Time Series Data [18.46091267922322]
時系列データは、しばしば複数の時間スケールで情報で構成されている。
この情報を捉えるためのディープラーニング戦略は存在するが、ネットワークを大きくし、より多くのデータを必要とし、計算を要求されやすく、解釈が難しいものが多い。
本稿では,離散ウェーブレット変換における翻訳と拡張シーケンスと,従来の畳み込みニューラルネットワークとバックプロパゲーションを組み合わせた,最小かつ計算効率のタイムスケールネットワークを提案する。
論文 参考訳(メタデータ) (2023-11-10T16:39:55Z) - FFEINR: Flow Feature-Enhanced Implicit Neural Representation for
Spatio-temporal Super-Resolution [4.577685231084759]
本稿では,フローフィールドデータの超高分解能化のための特徴強調型ニューラルインシシット表現(FFEINR)を提案する。
モデル構造とサンプリング分解能の観点から、暗黙のニューラル表現を最大限に活用することができる。
FFEINRのトレーニングプロセスは、入力層に機能拡張を導入することで容易になる。
論文 参考訳(メタデータ) (2023-08-24T02:28:18Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
本稿では,スパースビューCBCT再構成のための新規かつ高速な自己教師型ソリューションを提案する。
所望の減衰係数は、3次元空間座標の連続関数として表現され、完全に接続されたディープニューラルネットワークによってパラメータ化される。
ハッシュ符号化を含む学習ベースのエンコーダが採用され、ネットワークが高周波の詳細をキャプチャするのに役立つ。
論文 参考訳(メタデータ) (2022-09-29T04:06:00Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Meta-Learning Sparse Implicit Neural Representations [69.15490627853629]
入射神経表現は、一般的な信号を表す新しい道である。
現在のアプローチは、多数の信号やデータセットに対してスケールすることが難しい。
メタ学習型スパースニューラル表現は,高密度メタ学習モデルよりもはるかに少ない損失が得られることを示す。
論文 参考訳(メタデータ) (2021-10-27T18:02:53Z) - Ensemble Augmentation for Deep Neural Networks Using 1-D Time Series
Vibration Data [0.0]
時系列データは、データ駆動技術で使用される生データ表現の基本的なタイプの1つである。
Deep Neural Networks(DNN)は、最適なパフォーマンスを得るために、巨大なラベル付きトレーニングサンプルを必要とする。
本研究では,この制限を克服するために,アンサンブル拡張と呼ばれるデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2021-08-06T20:04:29Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
本稿では,正弦波数を検出するニューラルネットワークアーキテクチャであるSignalNetを提案する。
基礎となるデータ分布と比較して,ネットワークの結果を比較するための最悪の学習しきい値を導入する。
シミュレーションでは、我々のアルゴリズムは常に3ビットデータのしきい値を超えることができるが、しばしば1ビットデータのしきい値を超えることはできない。
論文 参考訳(メタデータ) (2021-06-10T04:21:20Z) - Learning Frequency Domain Approximation for Binary Neural Networks [68.79904499480025]
フーリエ周波数領域における符号関数の勾配を正弦関数の組み合わせを用いて推定し,BNNの訓練を行う。
いくつかのベンチマークデータセットとニューラルネットワークの実験により、この手法で学習したバイナリネットワークが最先端の精度を達成することが示されている。
論文 参考訳(メタデータ) (2021-03-01T08:25:26Z) - Accurate Tumor Tissue Region Detection with Accelerated Deep
Convolutional Neural Networks [12.7414209590152]
がん診断のための手動の病理診断は、退屈で反復的である。
我々のアプローチであるFLASHは、ディープ畳み込みニューラルネットワーク(DCNN)アーキテクチャに基づいている。
計算コストを削減し、一般的なディープラーニングアプローチよりも2桁の速さで高速である。
論文 参考訳(メタデータ) (2020-04-18T08:24:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。