論文の概要: Multi-Step Traffic Prediction for Multi-Period Planning in Optical Networks
- arxiv url: http://arxiv.org/abs/2404.08314v1
- Date: Fri, 12 Apr 2024 08:20:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-15 15:35:59.539119
- Title: Multi-Step Traffic Prediction for Multi-Period Planning in Optical Networks
- Title(参考訳): 光ネットワークにおける多段階計画のためのマルチステップ交通予測
- Authors: Hafsa Maryam, Tania Panayiotou, Georgios Ellinas,
- Abstract要約: サービスオーバープロビジョンに対処し、交通変化への適応性を改善するために、多段階の交通予測を利用する多周期計画フレームワークが提案されている。
エンコーダ・デコーダ深層学習モデルは,まず,実交通トラヒックを解析して,複数ステップ先進予測に活用される。
- 参考スコア(独自算出の注目度): 4.963536645449425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A multi-period planning framework is proposed that exploits multi-step ahead traffic predictions to address service overprovisioning and improve adaptability to traffic changes, while ensuring the necessary quality-of-service (QoS) levels. An encoder-decoder deep learning model is initially leveraged for multi-step ahead prediction by analyzing real-traffic traces. This information is then exploited by multi-period planning heuristics to efficiently utilize available network resources while minimizing undesired service disruptions (caused due to lightpath re-allocations), with these heuristics outperforming a single-step ahead prediction approach.
- Abstract(参考訳): サービスオーバープロビジョンに対処し、必要な品質・オブ・サービス(QoS)レベルを確保しつつ、トラフィック変更への適応性を改善するために、複数段階の事前トラフィック予測を活用する多周期計画フレームワークが提案されている。
エンコーダ・デコーダ深層学習モデルは,まず,実交通トラヒックを解析して,複数ステップ先進予測に活用される。
この情報は多周期計画ヒューリスティックによって利用され、望ましくないサービス障害(光路の再配置による)を最小限に抑えつつ、利用可能なネットワークリソースを効率的に活用する。
関連論文リスト
- Strada-LLM: Graph LLM for traffic prediction [62.2015839597764]
交通予測における大きな課題は、非常に異なる交通条件によって引き起こされる多様なデータ分散を扱うことである。
近位交通情報を考慮した交通予測のためのグラフ対応LLMを提案する。
我々は、新しいデータ分散に直面する際に、ドメイン適応を効率的にするための軽量なアプローチを採用する。
論文 参考訳(メタデータ) (2024-10-28T09:19:29Z) - WardropNet: Traffic Flow Predictions via Equilibrium-Augmented Learning [3.592366968127126]
我々は,高速かつ正確なトラフィックフロー予測を可能にする,新しい拡張ニューラルネットワークアーキテクチャを導入する。
本稿では、平衡の幾何に適合するブレグマンの発散を利用して、エンドツーエンドの学習を可能にする方法を示す。
WardropNetは、リアルでスタイリングされたトラフィックシナリオに対するトラフィック均衡を予測する純粋な学習ベースのアプローチよりも優れています。
論文 参考訳(メタデータ) (2024-10-09T08:07:29Z) - Computation Pre-Offloading for MEC-Enabled Vehicular Networks via Trajectory Prediction [38.493882483362135]
本稿では,車両の過去の軌跡を解析するためのトラジェクトリ予測に基づく事前負荷決定アルゴリズムを提案する。
本稿では,Double Deep Q-Network (DDQN) を用いて,エッジサーバがタスク処理遅延を最小限に抑える動的リソース割り当てアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-26T09:46:43Z) - A Multi-Stage Goal-Driven Network for Pedestrian Trajectory Prediction [6.137256382926171]
本稿では,多段階目標駆動ネットワーク(MGNet)と呼ばれる,歩行者軌道予測の新しい手法を提案する。
ネットワークは、条件付き変分オートエンコーダ(CVAE)、アテンションモジュール、多段階ゴール評価器の3つの主要コンポーネントから構成される。
MGNetの有効性は、JAADおよびPIEデータセットに関する総合的な実験を通して示される。
論文 参考訳(メタデータ) (2024-06-26T03:59:21Z) - Traj-MAE: Masked Autoencoders for Trajectory Prediction [69.7885837428344]
軌道予測は、危険を予測して信頼性の高い自動運転システムを構築する上で重要な課題である。
本稿では,運転環境におけるエージェントの複雑な動作をよりよく表現する,軌道予測のための効率的なマスク付きオートエンコーダを提案する。
複数エージェント設定と単一エージェント設定の両方の実験結果から,Traj-MAEが最先端手法と競合する結果が得られることが示された。
論文 参考訳(メタデータ) (2023-03-12T16:23:27Z) - Guaranteed Dynamic Scheduling of Ultra-Reliable Low-Latency Traffic via
Conformal Prediction [72.59079526765487]
アップリンクにおける超信頼性・低遅延トラフィック(URLLC)の動的スケジューリングは、既存のサービスの効率を大幅に向上させることができる。
主な課題は、URLLCパケット生成のプロセスにおける不確実性である。
本稿では,URLLC トラフィック予測器の品質に関わらず,信頼性と遅延を保証した新しい URLLC パケットスケジューラを提案する。
論文 参考訳(メタデータ) (2023-02-15T14:09:55Z) - Low Complexity Adaptive Machine Learning Approaches for End-to-End
Latency Prediction [0.0]
この研究は、予測、監視、予測のための効率的で低コストな適応アルゴリズムの設計である。
我々は,GNNにおける近年の国際的課題の後に提供されたパブリックジェネレータから得られるデータに対して,我々のアプローチと結果を説明するために,エンドツーエンドの遅延予測に焦点を当てた。
論文 参考訳(メタデータ) (2023-01-31T10:29:11Z) - Learning to Transfer for Traffic Forecasting via Multi-task Learning [3.1836399559127218]
ディープニューラルネットワークは、短期的な交通予測において優れた性能を示している。
Traffic4castは、空間と時間におけるドメインシフトに対するトラフィック予測モデルの堅牢性を想定した最初のサービスである。
交通予測モデルの時間・時間領域適応のためのマルチタスク学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-27T03:16:40Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
パケット遅延を最小限に抑えるため,制約付き待ち行列ネットワークにおけるスケジューリングの問題を考える。
我々は、利用可能な原子ポリシーよりも優れたスケジューラを生成するポリシー勾配に基づく強化学習アルゴリズムを使用する。
論文 参考訳(メタデータ) (2021-05-01T10:18:34Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) は、新しい2段階の動作予測フレームワークである。
TPNetはまず、仮説の提案として将来の軌道の候補セットを生成し、次に提案の分類と修正によって最終的な予測を行う。
4つの大規模軌道予測データセットの実験は、TPNetが定量的かつ定性的に、最先端の結果を達成することを示した。
論文 参考訳(メタデータ) (2020-04-26T00:01:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。