Theory of time-bin entangled photons from quantum emitters
- URL: http://arxiv.org/abs/2404.08348v2
- Date: Wed, 24 Apr 2024 08:09:58 GMT
- Title: Theory of time-bin entangled photons from quantum emitters
- Authors: Thomas K. Bracht, Florian Kappe, Moritz Cygorek, Tim Seidelmann, Yusuf Karli, Vikas Remesh, Gregor Weihs, Vollrath Martin Axt, Doris E. Reiter,
- Abstract summary: Entangled photon pairs form the foundation for many applications in the realm of quantum communication.
Time-bin encoding can potentially offer an improved stability compared to polarization encoded qubits.
We derive multi-time correlation functions of the time-bin encoded photon pairs, corresponding to quantum state tomographic measurements.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entangled photon pairs form the foundation for many applications in the realm of quantum communication. For fiber-optic transfer of entangled photon pairs, time-bin encoding can potentially offer an improved stability compared to polarization encoded qubits. Here, we lay the theoretical foundations to describe the measurement of time-bin entangled photons. We derive multi-time correlation functions of the time-bin encoded photon pairs, corresponding to quantum state tomographic measurements. Our theory can be the starting point to extend the simulations to include all kinds of loss or decoherence effects that apply in a specific quantum system for realistic simulation for time-bin entanglement from quantum emitters.
Related papers
- Simulating photon counting from dynamic quantum emitters by exploiting
zero-photon measurements [0.0]
I show that exploiting information hidden in zero-photon measurement outcomes provides an exponential speedup for time-integrated photon counting simulations.
This enables simulations of large photonic experiments with an unprecedented level of physical detail.
arXiv Detail & Related papers (2023-07-31T11:45:32Z) - Subcycle tomography of quantum light [0.0]
We show how local quantum measurements allow to reconstruct and visualize a quantum field under study at subcycle scales.
In particular, generation and tomography of ultrabroadband squeezed states as well as photon-subtracted states derived from them are described.
Our results set a cornerstone in emerging chapter of quantum physics termed time-domain quantum optics.
arXiv Detail & Related papers (2023-07-24T14:00:23Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Implementation of photon partial distinguishability in a quantum optical
circuit simulation [0.0]
Photonic quantum states are represented by wavepackets which contain information on their time and frequency distributions.
In order to account for the partial photon distinguishability, we expand the number of degrees of freedom associated with the circuit operation.
This strategy allows to define delay operations in the same footing as the linear optical elements.
arXiv Detail & Related papers (2022-08-05T16:01:39Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Quantum Fourier transform on photonic qubits using cavity QED [9.83302372715731]
A single atom-coupled cavity system mediates the photon-photon interactions.
Time-delay feedback enables a single atom-cavity system to implement a quantum Fourier transform on an arbitrary number of photonic qubits.
arXiv Detail & Related papers (2021-12-01T17:09:32Z) - Quantum communication with ultrafast time-bin qubits [0.0]
We experimentally demonstrate the feasibility of picosecond time-bin states of light, known as ultrafast time-bins, for applications in quantum communications.
With the ability to measure time-bin superpositions with excellent phase stability, we enable the use of temporal states in efficient quantum key distribution protocols.
arXiv Detail & Related papers (2021-06-17T22:08:08Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.