Subcycle tomography of quantum light
- URL: http://arxiv.org/abs/2307.12812v1
- Date: Mon, 24 Jul 2023 14:00:23 GMT
- Title: Subcycle tomography of quantum light
- Authors: Geehyun Yang, Matthias Kizmann, Alfred Leitenstorfer, Andrey S.
Moskalenko
- Abstract summary: We show how local quantum measurements allow to reconstruct and visualize a quantum field under study at subcycle scales.
In particular, generation and tomography of ultrabroadband squeezed states as well as photon-subtracted states derived from them are described.
Our results set a cornerstone in emerging chapter of quantum physics termed time-domain quantum optics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum light is considered to be one of the key resources of the coming
second quantum revolution expected to give rise to groundbreaking technologies
and applications. If the spatio-temporal and polarization structure of modes is
known, the properties of quantum light are well understood. This information
provides the basis for contemporary quantum optics and its applications in
quantum communication and metrology. However, thinking about quantum light at
the most fundamental timescale, namely the oscillation cycle of a mode or the
inverse frequency of an involved photon, we realize that the corresponding
picture has been missing until now. For instance, how to comprehend and
characterize a single photon at this timescale? To fill this gap, we
demonstrate theoretically how local quantum measurements allow to reconstruct
and visualize a quantum field under study at subcycle scales, even when its
temporal mode structure is a priori unknown. In particular, generation and
tomography of ultrabroadband squeezed states as well as photon-subtracted
states derived from them are described, incorporating also single-photon
states. Our results set a cornerstone in the emerging chapter of quantum
physics termed time-domain quantum optics. We expect this development to elicit
new spectroscopic concepts for approaching e.g. fundamental correlations and
entanglement in the dynamics of quantum matter, overcoming the temporal
limitation set by the oscillation cycles of both light and elementary
excitations.
Related papers
- Robust Single-Photon Generation for Quantum Information Enabled by Stimulated Adiabatic Rapid Passage [0.0]
We present a robust scheme for the coherent generation of indistinguishable single-photon states with very low photon number coherence.
Our novel approach combines the advantages of adiabatic rapid passage (ARP) and stimulated two-photon excitation (sTPE)
We demonstrate robust quantum light generation while maintaining the prime quantum-optical quality of the emitted light state.
arXiv Detail & Related papers (2024-09-21T02:12:16Z) - Theory of time-bin entangled photons from quantum emitters [0.0]
Entangled photon pairs form the foundation for many applications in the realm of quantum communication.
Time-bin encoding can potentially offer an improved stability compared to polarization encoded qubits.
We derive multi-time correlation functions of the time-bin encoded photon pairs, corresponding to quantum state tomographic measurements.
arXiv Detail & Related papers (2024-04-12T09:23:46Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Engineering quantum states from a spatially structured quantum eraser [0.0]
Quantum interference can be enabled by projecting the quantum state onto ambiguous properties that render the photons indistinguishable.
By combining these ideas, here we design and experimentally demonstrate a simple and robust scheme that tailors quantum interference to engineer photonic states.
We believe these spatially-engineered multi-photon quantum states may be of significance in fields such as quantum metrology, microscopy, and communications.
arXiv Detail & Related papers (2023-06-24T00:11:36Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - Modelling Markovian light-matter interactions for quantum optical
devices in the solid state [0.0]
I analyze fundamental components and processes for quantum optical devices with a focus on solid-state quantum systems.
I make heavy use of an analytic quantum trajectories approach applied to a general Markovian master equation of an optically-active quantum system.
arXiv Detail & Related papers (2021-05-13T23:00:34Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Probing excited-state dynamics with quantum entangled photons:
Correspondence to coherent multidimensional spectroscopy [0.0]
Quantum light is a key resource for promoting quantum technology.
One such class of technology aims to improve the precision of optical measurements using engineered quantum states of light.
arXiv Detail & Related papers (2020-05-22T03:22:44Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.