Lightweight Multi-System Multivariate Interconnection and Divergence Discovery
- URL: http://arxiv.org/abs/2404.08453v1
- Date: Fri, 12 Apr 2024 13:02:33 GMT
- Title: Lightweight Multi-System Multivariate Interconnection and Divergence Discovery
- Authors: Mulugeta Weldezgina Asres, Christian Walter Omlin, Jay Dittmann, Pavel Parygin, Joshua Hiltbrand, Seth I. Cooper, Grace Cummings, David Yu,
- Abstract summary: This study presents a lightweight interconnection and divergence discovery mechanism (LIDD) to identify abnormal behavior in multi-system environments.
Our experiment on the readout systems of the Hadron Calorimeter of the Compact Muon Solenoid (CMS) experiment at CERN demonstrates the effectiveness of the proposed method.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying outlier behavior among sensors and subsystems is essential for discovering faults and facilitating diagnostics in large systems. At the same time, exploring large systems with numerous multivariate data sets is challenging. This study presents a lightweight interconnection and divergence discovery mechanism (LIDD) to identify abnormal behavior in multi-system environments. The approach employs a multivariate analysis technique that first estimates the similarity heatmaps among the sensors for each system and then applies information retrieval algorithms to provide relevant multi-level interconnection and discrepancy details. Our experiment on the readout systems of the Hadron Calorimeter of the Compact Muon Solenoid (CMS) experiment at CERN demonstrates the effectiveness of the proposed method. Our approach clusters readout systems and their sensors consistent with the expected calorimeter interconnection configurations, while capturing unusual behavior in divergent clusters and estimating their root causes.
Related papers
- Detecting entanglement with transport measurement in weakly interacting and fluctuating systems [1.0912498035272808]
We develop a protocol to measure von Neumann entropy and mutual information in quantum transport systems.<n>The measurement is feasible for systems with boundary interactions and, critically, for bulk-interacting systems subject to a quantum quench of their internal couplings.
arXiv Detail & Related papers (2025-08-04T13:05:44Z) - Scalable Temporal Anomaly Causality Discovery in Large Systems: Achieving Computational Efficiency with Binary Anomaly Flag Data [0.0]
This study proposes an anomaly causal discovery approach (AnomalyCD)
It addresses the accuracy and computational challenges of generating causal graphs from binary flag data sets.
Results demonstrate the considerable reduction of the computation overhead and moderate enhancement of the accuracy of temporal causal discovery.
arXiv Detail & Related papers (2024-12-16T14:11:28Z) - Optimizing Multispectral Object Detection: A Bag of Tricks and Comprehensive Benchmarks [49.84182981950623]
Multispectral object detection, utilizing RGB and TIR (thermal infrared) modalities, is widely recognized as a challenging task.
It requires not only the effective extraction of features from both modalities and robust fusion strategies, but also the ability to address issues such as spectral discrepancies.
We introduce an efficient and easily deployable multispectral object detection framework that can seamlessly optimize high-performing single-modality models.
arXiv Detail & Related papers (2024-11-27T12:18:39Z) - Online Multi-modal Root Cause Analysis [61.94987309148539]
Root Cause Analysis (RCA) is essential for pinpointing the root causes of failures in microservice systems.
Existing online RCA methods handle only single-modal data overlooking, complex interactions in multi-modal systems.
We introduce OCEAN, a novel online multi-modal causal structure learning method for root cause localization.
arXiv Detail & Related papers (2024-10-13T21:47:36Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - Sensor Fault Detection and Isolation in Autonomous Nonlinear Systems
Using Neural Network-Based Observers [6.432798111887824]
Sensor fault detection and isolation (s-FDI) method applies to a general class of nonlinear systems.
Key aspect of this approach lies in the utilization of a neural network-based Kazantzis-Kravaris/Luenberger (KKL) observer.
arXiv Detail & Related papers (2023-04-18T09:05:07Z) - Quality-Based Conditional Processing in Multi-Biometrics: Application to
Sensor Interoperability [63.05238390013457]
We describe and evaluate the ATVS-UAM fusion approach submitted to the quality-based evaluation of the 2007 BioSecure Multimodal Evaluation Campaign.
Our approach is based on linear logistic regression, in which fused scores tend to be log-likelihood-ratios.
Results show that the proposed approach outperforms all the rule-based fusion schemes.
arXiv Detail & Related papers (2022-11-24T12:11:22Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals [10.866594993485226]
We propose a novel deep learning-based anomaly detection algorithm called Deep Convolutional Autoencoding Memory network (CAE-M)
We first build a Deep Convolutional Autoencoder to characterize spatial dependence of multi-sensor data with a Maximum Mean Discrepancy (MMD)
Then, we construct a Memory Network consisting of linear (Autoregressive Model) and non-linear predictions (Bigressive LSTM with Attention) to capture temporal dependence from time-series data.
arXiv Detail & Related papers (2021-07-27T06:48:20Z) - Online Estimation and Coverage Control with Heterogeneous Sensing
Information [4.350783459690612]
Heterogeneous multi-robot sensing systems are able to characterize physical processes more comprehensively than homogeneous systems.
Access to multiple modalities of sensory data allow such systems to fuse information between complementary sources.
Low-fidelity data may be more plentiful, while high-fidelity data may be more trustworthy.
arXiv Detail & Related papers (2021-06-28T20:59:57Z) - Frequency-based Multi Task learning With Attention Mechanism for Fault
Detection In Power Systems [6.4332733596587115]
We introduce a novel deep learning-based approach for fault detection and test it on a real data set, namely, the Kaggle platform for a partial discharge detection task.
Our solution adopts a Long-Short Term Memory architecture with attention mechanism to extract time series features, and uses a 1D-Convolutional Neural Network structure to exploit frequency information of the signal for prediction.
arXiv Detail & Related papers (2020-09-15T02:01:47Z) - End-to-End Models for the Analysis of System 1 and System 2 Interactions
based on Eye-Tracking Data [99.00520068425759]
We propose a computational method, within a modified visual version of the well-known Stroop test, for the identification of different tasks and potential conflicts events.
A statistical analysis shows that the selected variables can characterize the variation of attentive load within different scenarios.
We show that Machine Learning techniques allow to distinguish between different tasks with a good classification accuracy.
arXiv Detail & Related papers (2020-02-03T17:46:13Z) - Learning Selective Sensor Fusion for States Estimation [47.76590539558037]
We propose SelectFusion, an end-to-end selective sensor fusion module.
During prediction, the network is able to assess the reliability of the latent features from different sensor modalities.
We extensively evaluate all fusion strategies in both public datasets and on progressively degraded datasets.
arXiv Detail & Related papers (2019-12-30T20:25:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.