Sensor Fault Detection and Isolation in Autonomous Nonlinear Systems
Using Neural Network-Based Observers
- URL: http://arxiv.org/abs/2304.08837v2
- Date: Wed, 22 Nov 2023 05:32:14 GMT
- Title: Sensor Fault Detection and Isolation in Autonomous Nonlinear Systems
Using Neural Network-Based Observers
- Authors: John Cao, Muhammad Umar B. Niazi, Matthieu Barreau, Karl Henrik
Johansson
- Abstract summary: Sensor fault detection and isolation (s-FDI) method applies to a general class of nonlinear systems.
Key aspect of this approach lies in the utilization of a neural network-based Kazantzis-Kravaris/Luenberger (KKL) observer.
- Score: 6.432798111887824
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel observer-based approach to detect and isolate
faulty sensors in nonlinear systems. The proposed sensor fault detection and
isolation (s-FDI) method applies to a general class of nonlinear systems. Our
focus is on s-FDI for two types of faults: complete failure and sensor
degradation. The key aspect of this approach lies in the utilization of a
neural network-based Kazantzis-Kravaris/Luenberger (KKL) observer. The neural
network is trained to learn the dynamics of the observer, enabling accurate
output predictions of the system. Sensor faults are detected by comparing the
actual output measurements with the predicted values. If the difference
surpasses a theoretical threshold, a sensor fault is detected. To identify and
isolate which sensor is faulty, we compare the numerical difference of each
sensor meassurement with an empirically derived threshold. We derive both
theoretical and empirical thresholds for detection and isolation, respectively.
Notably, the proposed approach is robust to measurement noise and system
uncertainties. Its effectiveness is demonstrated through numerical simulations
of sensor faults in a network of Kuramoto oscillators.
Related papers
- Fault Detection and Monitoring using an Information-Driven Strategy: Method, Theory, and Application [5.056456697289351]
We propose an information-driven fault detection method based on a novel concept drift detector.
The method is tailored to identifying drifts in input-output relationships of additive noise models.
We prove several theoretical properties of the proposed MI-based fault detection scheme.
arXiv Detail & Related papers (2024-05-06T17:43:39Z) - Deep convolutional neural networks for cyclic sensor data [0.0]
This study focuses on sensor-based condition monitoring and explores the application of deep learning techniques.
Our investigation involves comparing the performance of three models: a baseline model employing conventional methods, a single CNN model with early sensor fusion, and a two-lane CNN model (2L-CNN) with late sensor fusion.
arXiv Detail & Related papers (2023-08-14T07:51:15Z) - Detection of Sensor-To-Sensor Variations using Explainable AI [2.2956649873563952]
chemi-resistive gas sensing devices are plagued by issues of sensor variations during manufacturing.
This study proposes a novel approach for detecting sensor-to-sensor variations in sensing devices using the explainable AI (XAI) method of SHapley Additive exPlanations (SHAP)
The methodology is tested using artificial and realistic Ozone concentration profiles to train a Gated Recurrent Unit (GRU) model.
arXiv Detail & Related papers (2023-06-19T11:00:54Z) - Graph Neural Networks with Trainable Adjacency Matrices for Fault
Diagnosis on Multivariate Sensor Data [69.25738064847175]
It is necessary to consider the behavior of the signals in each sensor separately, to take into account their correlation and hidden relationships with each other.
The graph nodes can be represented as data from the different sensors, and the edges can display the influence of these data on each other.
It was proposed to construct a graph during the training of graph neural network. This allows to train models on data where the dependencies between the sensors are not known in advance.
arXiv Detail & Related papers (2022-10-20T11:03:21Z) - Anomaly Detection and Inter-Sensor Transfer Learning on Smart
Manufacturing Datasets [6.114996271792091]
In many cases, the goal of the smart manufacturing system is to rapidly detect (or anticipate) failures to reduce operational cost and eliminate downtime.
This often boils down to detecting anomalies within the sensor date acquired from the system.
The smart manufacturing application domain poses certain salient technical challenges.
We show that predictive failure classification can be achieved, thus paving the way for predictive maintenance.
arXiv Detail & Related papers (2022-06-13T17:51:24Z) - Transfer Learning for Fault Diagnosis of Transmission Lines [55.971052290285485]
A novel transfer learning framework based on a pre-trained LeNet-5 convolutional neural network is proposed.
It is able to diagnose faults for different transmission line lengths and impedances by transferring the knowledge from a source neural network to predict a dissimilar target dataset.
arXiv Detail & Related papers (2022-01-20T06:36:35Z) - Bayesian Autoencoders for Drift Detection in Industrial Environments [69.93875748095574]
Autoencoders are unsupervised models which have been used for detecting anomalies in multi-sensor environments.
Anomalies can come either from real changes in the environment (real drift) or from faulty sensory devices (virtual drift)
arXiv Detail & Related papers (2021-07-28T10:19:58Z) - Bandit Quickest Changepoint Detection [55.855465482260165]
Continuous monitoring of every sensor can be expensive due to resource constraints.
We derive an information-theoretic lower bound on the detection delay for a general class of finitely parameterized probability distributions.
We propose a computationally efficient online sensing scheme, which seamlessly balances the need for exploration of different sensing options with exploitation of querying informative actions.
arXiv Detail & Related papers (2021-07-22T07:25:35Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Real-time detection of uncalibrated sensors using Neural Networks [62.997667081978825]
An online machine-learning based uncalibration detector for temperature, humidity and pressure sensors was developed.
The solution integrates an Artificial Neural Network as main component which learns from the behavior of the sensors under calibrated conditions.
The obtained results show that the proposed solution is able to detect uncalibrations for deviation values of 0.25 degrees, 1% RH and 1.5 Pa, respectively.
arXiv Detail & Related papers (2021-02-02T15:44:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.