論文の概要: On the Independence Assumption in Neurosymbolic Learning
- arxiv url: http://arxiv.org/abs/2404.08458v2
- Date: Fri, 7 Jun 2024 15:10:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 19:28:06.739203
- Title: On the Independence Assumption in Neurosymbolic Learning
- Title(参考訳): ニューロシンボリックラーニングにおける独立性評価について
- Authors: Emile van Krieken, Pasquale Minervini, Edoardo M. Ponti, Antonio Vergari,
- Abstract要約: 最先端のニューロシンボリック学習システムは確率論的推論を用いて、ニューラルネットワークを記号に対する論理的制約に従う予測へと導く。
このようなシステムの多くは、学習と推論を簡略化するために入力が与えられた場合、考慮されたシンボルの確率は条件的に独立であると仮定している。
- 参考スコア(独自算出の注目度): 14.447011414006719
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: State-of-the-art neurosymbolic learning systems use probabilistic reasoning to guide neural networks towards predictions that conform to logical constraints over symbols. Many such systems assume that the probabilities of the considered symbols are conditionally independent given the input to simplify learning and reasoning. We study and criticise this assumption, highlighting how it can hinder optimisation and prevent uncertainty quantification. We prove that loss functions bias conditionally independent neural networks to become overconfident in their predictions. As a result, they are unable to represent uncertainty over multiple valid options. Furthermore, we prove that these loss functions are difficult to optimise: they are non-convex, and their minima are usually highly disconnected. Our theoretical analysis gives the foundation for replacing the conditional independence assumption and designing more expressive neurosymbolic probabilistic models.
- Abstract(参考訳): 最先端のニューロシンボリック学習システムは確率論的推論を用いて、ニューラルネットワークを記号に対する論理的制約に従う予測へと導く。
このようなシステムの多くは、学習と推論を簡略化するために入力が与えられた場合、考慮されたシンボルの確率は条件的に独立であると仮定する。
我々は、この仮定を研究、批判し、最適化を妨げ、不確実な定量化を防ぐ方法について強調する。
損失関数が条件付き独立ニューラルネットワークの予測において過信されることを示す。
その結果、複数の有効な選択肢に対して不確実性を表現できない。
さらに、これらの損失関数は非凸であり、そのミニマは通常高度に非連結であるので最適化が難しいことを証明している。
我々の理論分析は、条件付き独立仮定を置き換え、より表現力のあるニューロシンボリック確率モデルを設計するための基礎となる。
関連論文リスト
- On the Hardness of Probabilistic Neurosymbolic Learning [10.180468225166441]
ニューロシンボリックモデルにおける確率的推論の微分の複雑さについて検討する。
モデルサンプリングに基づく非バイアス勾配推定器WeightMEを紹介する。
我々の実験は、まだ正確な解が可能である場合でも、既存の偏差近似は最適化に苦慮していることを示している。
論文 参考訳(メタデータ) (2024-06-06T19:56:33Z) - Not All Neuro-Symbolic Concepts Are Created Equal: Analysis and
Mitigation of Reasoning Shortcuts [24.390922632057627]
Neuro-Symbolic(NeSy)予測モデルは、与えられた制約に対するコンプライアンスの改善を約束する。
サブシンボリック入力から抽出された高レベルな概念を推論することで、いくつかの先行知識と整合したラベルを推論することができる。
精度は高いが、意図しないセマンティクスで概念を活用すれば、約束された利点を欠くことになる。
論文 参考訳(メタデータ) (2023-05-31T15:35:48Z) - Probabilistic computation and uncertainty quantification with emerging
covariance [11.79594512851008]
堅牢で解釈可能なセキュアなAIシステムを構築するには、確率論的視点の下で不確実性を定量化し、表現する必要がある。
確率計算は、ほとんどの従来の人工ニューラルネットワークにとって重要な課題である。
論文 参考訳(メタデータ) (2023-05-30T17:55:29Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
ニューロシンボリックアプローチは一般に確率論的目的のファジィ近似を利用する。
トラクタブル回路において,これを効率的に計算する方法を示す。
我々は,Warcraftにおける最小コストパスの予測,最小コスト完全マッチングの予測,スドクパズルの解法という3つの課題に対して,アプローチを検証した。
論文 参考訳(メタデータ) (2023-02-28T00:04:22Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
本稿では,意味概念間で不確実性を分散する軌道予測のための解釈可能なパラダイムを提案する。
実世界の自動運転データに対する我々のアプローチを検証し、最先端のベースラインよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-16T06:28:20Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
不確実性を考慮した回帰ベースニューラルネットワーク(NN)による新しいアプローチは、従来の決定論的手法や典型的なベイズ的NNよりも有望であることを示している。
我々は、理論的欠点を詳述し、合成および実世界のデータセットのパフォーマンスを分析し、Deep Evidential Regressionが正確な不確実性ではなく定量化であることを示す。
論文 参考訳(メタデータ) (2022-05-20T10:10:32Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
グラディエント・スターベーションは、タスクに関連する機能のサブセットのみをキャプチャすることで、クロスエントロピー損失を最小化するときに発生する。
この研究は、ニューラルネットワークにおけるそのような特徴不均衡の出現に関する理論的説明を提供する。
論文 参考訳(メタデータ) (2020-11-18T18:52:08Z) - Relaxing the Constraints on Predictive Coding Models [62.997667081978825]
予測符号化(英: Predictive coding)は、脳が行う主計算が予測誤差の最小化であるとする皮質機能の影響力のある理論である。
アルゴリズムの標準的な実装は、同じ前方と後方の重み、後方の非線形微分、1-1エラーユニット接続といった、潜在的に神経的に予測できない特徴を含んでいる。
本稿では,これらの特徴はアルゴリズムに不可欠なものではなく,Hebbianの更新ルールを用いてパラメータセットを直接あるいは学習することで,学習性能に悪影響を及ぼすことなく除去可能であることを示す。
論文 参考訳(メタデータ) (2020-10-02T15:21:37Z) - Logical Neural Networks [51.46602187496816]
ニューラルネットワーク(学習)と記号論理(知識と推論)の両方の重要な特性をシームレスに提供する新しいフレームワークを提案する。
すべてのニューロンは、重み付けされた実数値論理における公式の構成要素としての意味を持ち、非常に解釈不能な非絡み合い表現をもたらす。
推論は事前に定義されたターゲット変数ではなく、オムニであり、論理的推論に対応する。
論文 参考訳(メタデータ) (2020-06-23T16:55:45Z) - Bayesian Neural Networks [0.0]
ニューラルネットワークによる予測におけるエラーを原理的に得る方法を示し、これらのエラーを特徴付ける2つの方法を提案する。
さらに、これらの2つのメソッドが実際に実施される際に、重大な落とし穴を持つ方法についても説明します。
論文 参考訳(メタデータ) (2020-06-02T09:43:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。