論文の概要: Semantic Communication for Cooperative Multi-Task Processing over Wireless Networks
- arxiv url: http://arxiv.org/abs/2404.08483v2
- Date: Wed, 17 Apr 2024 10:21:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 12:46:40.134930
- Title: Semantic Communication for Cooperative Multi-Task Processing over Wireless Networks
- Title(参考訳): 無線ネットワーク上での協調マルチタスク処理のための意味コミュニケーション
- Authors: Ahmad Halimi Razlighi, Carsten Bockelmann, Armin Dekorsy,
- Abstract要約: セマンティック・ソース」の定義を導入し、単一の観察に基づく複数の意味論の解釈を可能にする。
次にセマンティックエンコーダの設計を導入し、エンコーダを共通のユニットと複数の特定のユニットに分割する。
シミュレーションの結果,提案するセマンティックソースの有効性とシステム設計の有効性が示された。
- 参考スコア(独自算出の注目度): 8.766411351797885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we have expanded the current status of semantic communication limited to processing one task to a more general system that can handle multiple tasks concurrently. In pursuit of this, we first introduced our definition of the "semantic source", enabling the interpretation of multiple semantics based on a single observation. A semantic encoder design is then introduced, featuring the division of the encoder into a common unit and multiple specific units enabling cooperative multi-task processing. Simulation results demonstrate the effectiveness of the proposed semantic source and the system design. Our approach employs information maximization (infomax) and end-to-end design principles.
- Abstract(参考訳): 本稿では,複数のタスクを同時に処理できるより汎用的なシステムに,ひとつのタスクの処理に限定したセマンティックコミュニケーションの現状を拡張した。
そこで我々はまず「意味源」の定義を導入し、一つの観察に基づく複数の意味論の解釈を可能にした。
次にセマンティックエンコーダの設計を導入し、エンコーダを共通ユニットに分割し、協調マルチタスク処理を可能にする複数の特定ユニットを特徴とする。
シミュレーションの結果,提案するセマンティックソースの有効性とシステム設計の有効性が示された。
当社のアプローチでは,情報最大化(infomax)とエンドツーエンド設計の原則を採用しています。
関連論文リスト
- Cooperative and Collaborative Multi-Task Semantic Communication for Distributed Sources [8.22548024950756]
我々は、エンコーダを共通単位(CU)と多重特定単位(SU)に分割する[1]で導入された協調マルチタスク処理に基づいて構築する。
本稿では,マルチタスク処理をサポートするSemComシステムを提案する。
論文 参考訳(メタデータ) (2024-11-04T15:07:48Z) - RepVF: A Unified Vector Fields Representation for Multi-task 3D Perception [64.80760846124858]
本稿では,様々な知覚タスクの表現を調和させる新しい統一表現RepVFを提案する。
RepVFは、ベクトル場を通じてシーン内の異なるターゲットの構造を特徴付け、シングルヘッドでマルチタスクの学習モデルを可能にする。
RepVF 上に構築された RFTR は,タスク間の固有性を利用したネットワークである。
論文 参考訳(メタデータ) (2024-07-15T16:25:07Z) - Leveraging knowledge distillation for partial multi-task learning from multiple remote sensing datasets [2.1178416840822023]
ターゲットタスクの1つにトレーニング例をアノテートする部分的マルチタスク学習は、リモートセンシングにおいて有望なアイデアである。
本稿では, 知識蒸留を用いて, 代替課題における基礎的真理の必要性を代替し, その性能を向上させることを提案する。
論文 参考訳(メタデータ) (2024-05-24T09:48:50Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
マルチタスク学習(MTL)は、複数の関連するタスクを共同で学習し、共有表現空間から恩恵を受けるフレームワークである。
MTLは、ほとんど重複しない、あるいは重複しないアノテーションで分類タスクで成功することを示す。
本稿では,分散マッチングによるタスク間の知識交換を可能にする新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-02T14:18:11Z) - Contrastive Multi-Task Dense Prediction [11.227696986100447]
設計における中核的な目的は、異なるタスクに対する包括的な改善を達成するために、クロスタスクインタラクションを効果的にモデル化する方法である。
マルチタスク密接な予測のためのクロスタスク相互作用のモデル化に特徴的コントラスト整合を導入する。
本稿では,各サブタスクの表現学習を効果的に促進するために,一貫性に基づく新しいマルチタスクコントラスト正規化手法を提案する。
論文 参考訳(メタデータ) (2023-07-16T03:54:01Z) - Multi-task Bias-Variance Trade-off Through Functional Constraints [102.64082402388192]
マルチタスク学習は、多様なタスクによく機能する関数の集合を取得することを目的としている。
本稿では,2つの極端な学習シナリオ,すなわちすべてのタスクに対する単一関数と,他のタスクを無視するタスク固有関数から直感を抽出する。
本稿では,集中関数に対するドメイン固有解を強制する制約付き学習定式化を導入する。
論文 参考訳(メタデータ) (2022-10-27T16:06:47Z) - Exploring Relational Context for Multi-Task Dense Prediction [76.86090370115]
我々は,共通バックボーンと独立タスク固有のヘッドで表される,密集予測タスクのためのマルチタスク環境を考える。
マルチタスク設定では,グローバルやローカルなど,さまざまな注意に基づくコンテキストを探索する。
タスクペアごとに利用可能なすべてのコンテキストのプールをサンプリングするAdaptive Task-Relational Contextモジュールを提案する。
論文 参考訳(メタデータ) (2021-04-28T16:45:56Z) - Multi-task Supervised Learning via Cross-learning [102.64082402388192]
我々は,様々なタスクを解くことを目的とした回帰関数の集合を適合させることで,マルチタスク学習と呼ばれる問題を考える。
我々の新しい定式化では、これらの関数のパラメータを2つに分けて、互いに近づきながらタスク固有のドメインで学習する。
これにより、異なるドメインにまたがって収集されたデータが、互いのタスクにおける学習パフォーマンスを改善するのに役立つ、クロス・ファーティライズが促進される。
論文 参考訳(メタデータ) (2020-10-24T21:35:57Z) - Multi-Task Learning with Deep Neural Networks: A Survey [0.0]
マルチタスク学習(Multi-task learning、MTL)は、複数のタスクを共有モデルで同時に学習する機械学習のサブフィールドである。
深層ニューラルネットワークにおけるマルチタスク学習手法の概要を述べる。
論文 参考訳(メタデータ) (2020-09-10T19:31:04Z) - Small Towers Make Big Differences [59.243296878666285]
マルチタスク学習は、複数の機械学習タスクを同時に解決することを目的としている。
マルチタスク学習問題に対する優れた解法は、Paretoの最適性に加えて一般化可能であるべきである。
本稿では,マルチタスクモデルのためのパラメータ下自己助詞の手法を提案し,両世界のベストを達成した。
論文 参考訳(メタデータ) (2020-08-13T10:45:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。