論文の概要: Analyzing and Overcoming Local Optima in Complex Multi-Objective Optimization by Decomposition-Based Evolutionary Algorithms
- arxiv url: http://arxiv.org/abs/2404.08501v1
- Date: Fri, 12 Apr 2024 14:29:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-15 14:47:19.151065
- Title: Analyzing and Overcoming Local Optima in Complex Multi-Objective Optimization by Decomposition-Based Evolutionary Algorithms
- Title(参考訳): 分解に基づく進化的アルゴリズムによる複雑多目的最適化における局所最適化の解析と克服
- Authors: Ting Dong, Haoxin Wang, Hengxi Zhang, Wenbo Ding,
- Abstract要約: 多目的進化アルゴリズム(MOEAD)はしばしば局所最適に収束し、解の多様性を制限する。
本稿では,局所最適問題を克服するために,革新的なRP選択戦略であるベクトルガイドウェイトハイブリッド法を提案する。
本研究は,2014年から2022年までのMOEADsフレームワークにおける14のアルゴリズムによるアブレーションと,提案手法の有効性を従来の手法と最先端の手法の両方に対して評価するための一連の実証実験からなる。
- 参考スコア(独自算出の注目度): 5.153202024713228
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When addressing the challenge of complex multi-objective optimization problems, particularly those with non-convex and non-uniform Pareto fronts, Decomposition-based Multi-Objective Evolutionary Algorithms (MOEADs) often converge to local optima, thereby limiting solution diversity. Despite its significance, this issue has received limited theoretical exploration. Through a comprehensive geometric analysis, we identify that the traditional method of Reference Point (RP) selection fundamentally contributes to this challenge. In response, we introduce an innovative RP selection strategy, the Weight Vector-Guided and Gaussian-Hybrid method, designed to overcome the local optima issue. This approach employs a novel RP type that aligns with weight vector directions and integrates a Gaussian distribution to combine three distinct RP categories. Our research comprises two main experimental components: an ablation study involving 14 algorithms within the MOEADs framework, spanning from 2014 to 2022, to validate our theoretical framework, and a series of empirical tests to evaluate the effectiveness of our proposed method against both traditional and cutting-edge alternatives. Results demonstrate that our method achieves remarkable improvements in both population diversity and convergence.
- Abstract(参考訳): 複雑な多目的最適化問題、特に非凸および非一様パレートフロントの問題に対処する際、分解に基づく多目的進化アルゴリズム(MOEAD)はしばしば局所最適に収束し、解の多様性を制限する。
その重要性にもかかわらず、この問題は限定的な理論的探求を受けている。
包括的幾何学的解析により,従来の参照点選択法が本課題に根本的に寄与することが確認された。
そこで我々は,局所最適問題を克服するために,革新的なRP選択戦略であるウェイトベクトルガイド法とガウス・ハイブリッド法を導入する。
このアプローチでは、ウェイトベクトル方向と整合し、ガウス分布を統合して3つの異なるRP圏を結合する新しいRP型を用いる。
本研究は,2014年から2022年までのMOEADsフレームワーク内の14のアルゴリズムを対象とするアブレーション実験と,提案手法の有効性を評価するための実証実験の2つの要素からなる。
その結果,本手法は個体数の多様性と収束性の両方において顕著な改善を達成できた。
関連論文リスト
- Integrating Chaotic Evolutionary and Local Search Techniques in Decision Space for Enhanced Evolutionary Multi-Objective Optimization [1.8130068086063336]
本稿では,SOMMOP(Single-Objective Multi-Modal Optimization)とMOO(Multi-Objective Optimization)の両方に焦点を当てる。
SOMMOPではニッチ技術とカオス進化を統合し,ガウス突然変異を併用したパーシスタンス・クラスタリングを行った。
MOOでは,これらの手法を不確実性に基づく選択,適応的チューニングを組み込んだ包括的フレームワークに拡張し,決定論的群集に半径(R)の概念を導入する。
論文 参考訳(メタデータ) (2024-11-12T15:18:48Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Iterative Preference Learning from Human Feedback: Bridging Theory and Practice for RLHF under KL-Constraint [56.74058752955209]
本稿では,RLHFによる強化学習を用いた生成モデルのアライメント過程について検討する。
まず、オフラインPPOやオフラインDPOのような既存の一般的な手法の主な課題を、環境の戦略的探索に欠如していると認識する。
有限サンプル理論保証を用いた効率的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-12-18T18:58:42Z) - Combining Kernelized Autoencoding and Centroid Prediction for Dynamic
Multi-objective Optimization [3.431120541553662]
本稿では,カーネル化された自己コード進化探索と遠近法に基づく予測を組み合わせた統一パラダイムを提案する。
提案手法は,多くの複雑なベンチマーク問題に対して,最先端の5つのアルゴリズムと比較する。
論文 参考訳(メタデータ) (2023-12-02T00:24:22Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - A novel multiobjective evolutionary algorithm based on decomposition and
multi-reference points strategy [14.102326122777475]
分解に基づく多目的進化アルゴリズム(MOEA/D)は、多目的最適化問題(MOP)を解く上で、極めて有望なアプローチであると考えられている。
本稿では,よく知られたPascoletti-Serafiniスキャラライゼーション法とマルチ参照ポイントの新たな戦略により,MOEA/Dアルゴリズムの改良を提案する。
論文 参考訳(メタデータ) (2021-10-27T02:07:08Z) - A Multi-objective Evolutionary Algorithm for EEG Inverse Problem [0.0]
本稿では,脳波逆問題に対する多目的アプローチを提案する。
この問題の特徴から、この代替案にはそれを解決するための進化戦略が含まれていた。
その結果、分散ソリューションを推定するために、MOEAAR(Anatomical Restrictions)に基づく多目的進化的アルゴリズムが得られた。
論文 参考訳(メタデータ) (2021-07-21T19:37:27Z) - Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
Modeling [68.69431580852535]
サブグループフィードバックを取り入れた新しいGPレグレッションを導入する。
我々の修正された回帰は、以前のアプローチと比べて、明らかにばらつきを減らし、したがってより正確な後続を減らした。
我々は2つの異なる社会問題に対してアルゴリズムを実行する。
論文 参考訳(メタデータ) (2021-07-07T03:57:22Z) - Optimistic variants of single-objective bilevel optimization for
evolutionary algorithms [6.788217433800101]
ベンチマーク問題を解くために部分的部分進化的アプローチが提案され、優れた結果が得られた。
また、一般的な収束アプローチ、すなわち楽観的で悲観的なアプローチにも新しい変種が提案されている。
実験の結果、アルゴリズムは楽観的な変量を持つ最適解に異なる収束性を示す。
論文 参考訳(メタデータ) (2020-08-22T23:12:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。