論文の概要: Vision-Aware Text Features in Referring Image Segmentation: From Object Understanding to Context Understanding
- arxiv url: http://arxiv.org/abs/2404.08590v2
- Date: Mon, 04 Nov 2024 05:43:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:43:37.133415
- Title: Vision-Aware Text Features in Referring Image Segmentation: From Object Understanding to Context Understanding
- Title(参考訳): 画像セグメンテーションの参照における視覚的テキストの特徴:オブジェクト理解からコンテキスト理解へ
- Authors: Hai Nguyen-Truong, E-Ro Nguyen, Tuan-Anh Vu, Minh-Triet Tran, Binh-Son Hua, Sai-Kit Yeung,
- Abstract要約: 本稿では,人間の認知プロセスに触発された対象と文脈の理解を強調する新しい枠組みを提案する。
提案手法は,3つのベンチマークデータセットにおいて,大幅な性能向上を実現する。
- 参考スコア(独自算出の注目度): 26.768147543628096
- License:
- Abstract: Referring image segmentation is a challenging task that involves generating pixel-wise segmentation masks based on natural language descriptions. The complexity of this task increases with the intricacy of the sentences provided. Existing methods have relied mostly on visual features to generate the segmentation masks while treating text features as supporting components. However, this under-utilization of text understanding limits the model's capability to fully comprehend the given expressions. In this work, we propose a novel framework that specifically emphasizes object and context comprehension inspired by human cognitive processes through Vision-Aware Text Features. Firstly, we introduce a CLIP Prior module to localize the main object of interest and embed the object heatmap into the query initialization process. Secondly, we propose a combination of two components: Contextual Multimodal Decoder and Meaning Consistency Constraint, to further enhance the coherent and consistent interpretation of language cues with the contextual understanding obtained from the image. Our method achieves significant performance improvements on three benchmark datasets RefCOCO, RefCOCO+ and G-Ref. Project page: \url{https://vatex.hkustvgd.com/}.
- Abstract(参考訳): 画像セグメンテーションの参照は、自然言語の記述に基づいて画素単位のセグメンテーションマスクを生成するという課題である。
このタスクの複雑さは、提供される文の複雑さによって増加する。
既存の手法は、主に視覚的特徴に依存してセグメンテーションマスクを生成し、テキスト特徴をサポートコンポーネントとして扱う。
しかし、この未使用のテキスト理解は、与えられた表現を完全に理解するモデルの能力を制限している。
本研究では,視覚認識テキスト機能を通して,人間の認知プロセスに触発されたオブジェクトとコンテキストの理解を特に強調する新しいフレームワークを提案する。
まず、関心の主オブジェクトをローカライズし、オブジェクトのヒートマップをクエリ初期化プロセスに埋め込むCLIP Priorモジュールを紹介します。
次に,コンテクスト型マルチモーダルデコーダとMeaning Constraintという2つのコンポーネントの組み合わせを提案する。
提案手法は,RefCOCO,RefCOCO+,G-Refの3つのベンチマークデータセットに対して,大幅な性能向上を実現する。
プロジェクトページ: \url{https://vatex.hkustvgd.com/}。
関連論文リスト
- VLLMs Provide Better Context for Emotion Understanding Through Common Sense Reasoning [66.23296689828152]
我々は、視覚・言語モデルの機能を活用し、文脈内感情分類を強化する。
第1段階では、VLLMが対象者の明らかな感情の自然言語で記述を生成できるように促すことを提案する。
第2段階では、記述を文脈情報として使用し、画像入力とともに、トランスフォーマーベースのアーキテクチャのトレーニングに使用する。
論文 参考訳(メタデータ) (2024-04-10T15:09:15Z) - Synchronizing Vision and Language: Bidirectional Token-Masking
AutoEncoder for Referring Image Segmentation [26.262887028563163]
Referring Image (RIS)は、自然言語で表現されたターゲットオブジェクトをピクセルレベルのシーン内でセグメントすることを目的としている。
マスク付きオートエンコーダ(MAE)に触発された新しい双方向トークンマスキングオートエンコーダ(BTMAE)を提案する。
BTMAEは、画像と言語の両方に欠けている機能をトークンレベルで再構築することで、画像から言語、言語へのイメージのコンテキストを学習する。
論文 参考訳(メタデータ) (2023-11-29T07:33:38Z) - LLM Blueprint: Enabling Text-to-Image Generation with Complex and
Detailed Prompts [60.54912319612113]
拡散に基づく生成モデルは、テキストと画像の生成が著しく進歩するが、長く複雑なテキストプロンプトを処理する際には困難に直面する。
本稿では,Large Language Models (LLM) を利用してテキストプロンプトから重要なコンポーネントを抽出する手法を提案する。
複数のオブジェクトを特徴とする複雑なプロンプトの評価は,ベースライン拡散モデルと比較して,リコールの大幅な改善を示す。
論文 参考訳(メタデータ) (2023-10-16T17:57:37Z) - Improving Face Recognition from Caption Supervision with Multi-Granular
Contextual Feature Aggregation [0.0]
我々は,COTS(Commercial-off-the-Shelf)顔認識システムの性能向上のための新しいフレームワークとして,キャプション誘導顔認識(CGFR)を導入した。
本稿では,2つの顔認識モデル(ArcFaceとAdaFace)にCGFRフレームワークを実装し,その性能をマルチモーダルCelebA-HQデータセットで評価した。
論文 参考訳(メタデータ) (2023-08-13T23:52:15Z) - TextFormer: A Query-based End-to-End Text Spotter with Mixed Supervision [61.186488081379]
Transformerアーキテクチャを用いた問合せベースのエンドツーエンドテキストスポッターであるTextFormerを提案する。
TextFormerは、画像エンコーダとテキストデコーダの上に構築され、マルチタスクモデリングのための共同セマンティック理解を学ぶ。
分類、セグメンテーション、認識のブランチの相互訓練と最適化を可能にし、より深い特徴共有をもたらす。
論文 参考訳(メタデータ) (2023-06-06T03:37:41Z) - Position-Aware Contrastive Alignment for Referring Image Segmentation [65.16214741785633]
マルチモーダル特徴のアライメントを強化するために,位置認識型コントラストアライメントネットワーク(PCAN)を提案する。
1)自然言語記述に関連するすべてのオブジェクトの位置情報を提供する位置認識モジュール(PAM)と,2)マルチモーダルアライメントを強化するコントラスト言語理解モジュール(CLUM)の2つのモジュールで構成されている。
論文 参考訳(メタデータ) (2022-12-27T09:13:19Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
エンドツーエンドのCLIP駆動参照画像フレームワーク(CRIS)を提案する。
CRISは、テキストとピクセルのアライメントを達成するために、視覚言語によるデコーディングとコントラスト学習に頼っている。
提案するフレームワークは, 後処理を伴わずに, 最先端の性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-11-30T07:29:08Z) - Locate then Segment: A Strong Pipeline for Referring Image Segmentation [73.19139431806853]
参照画像セグメンテーションは、自然言語表現によって参照されるオブジェクトをセグメンテーションすることを目的とする。
従来の方法は、視覚言語機能を融合させ、最終的なセグメンテーションマスクを直接生成するための暗黙的および反復的な相互作用メカニズムの設計に焦点を当てています。
これらの問題に取り組むための「Then-Then-Segment」スキームを紹介します。
私たちのフレームワークはシンプルですが驚くほど効果的です。
論文 参考訳(メタデータ) (2021-03-30T12:25:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。