Differentially Private Log-Location-Scale Regression Using Functional Mechanism
- URL: http://arxiv.org/abs/2404.08715v1
- Date: Fri, 12 Apr 2024 04:14:08 GMT
- Title: Differentially Private Log-Location-Scale Regression Using Functional Mechanism
- Authors: Jiewen Sheng, Xiaolei Fang,
- Abstract summary: This article introduces differentially private log-location-scale (DP-LLS) regression models, which incorporate differential privacy into LLS regression.
We will derive the sensitivities utilized to determine the magnitude of the injected noise and prove that the proposed DP-LLS models satisfy $epsilon$-differential privacy.
- Score: 1.2277343096128712
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article introduces differentially private log-location-scale (DP-LLS) regression models, which incorporate differential privacy into LLS regression through the functional mechanism. The proposed models are established by injecting noise into the log-likelihood function of LLS regression for perturbed parameter estimation. We will derive the sensitivities utilized to determine the magnitude of the injected noise and prove that the proposed DP-LLS models satisfy $\epsilon$-differential privacy. In addition, we will conduct simulations and case studies to evaluate the performance of the proposed models. The findings suggest that predictor dimension, training sample size, and privacy budget are three key factors impacting the performance of the proposed DP-LLS regression models. Moreover, the results indicate that a sufficiently large training dataset is needed to simultaneously ensure decent performance of the proposed models and achieve a satisfactory level of privacy protection.
Related papers
- Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
Diffusion models have led to significant advancements in generative modelling.
Yet their widespread adoption poses challenges regarding data attribution and interpretability.
In this paper, we aim to help address such challenges by developing an textitinfluence functions framework.
arXiv Detail & Related papers (2024-10-17T17:59:02Z) - Self-Evolutionary Large Language Models through Uncertainty-Enhanced Preference Optimization [9.618391485742968]
Iterative preference optimization has recently become one of the de-facto training paradigms for large language models (LLMs)
We present an uncertainty-enhanced textbfPreference textbfOptimization framework to make the LLM self-evolve with reliable feedback.
Our framework substantially alleviates the noisy problem and improves the performance of iterative preference optimization.
arXiv Detail & Related papers (2024-09-17T14:05:58Z) - Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
Sparse Mixture of Expert (SMoE) models have emerged as a scalable alternative to dense models in language modeling.
Our research explores task-specific model pruning to inform decisions about designing SMoE architectures.
We introduce an adaptive task-aware pruning technique UNCURL to reduce the number of experts per MoE layer in an offline manner post-training.
arXiv Detail & Related papers (2024-09-02T22:35:03Z) - Weights Shuffling for Improving DPSGD in Transformer-based Models [7.356743536182233]
This work introduces an innovative shuffling mechanism in Differentially-Private Gradient Descent (DPSGD) to enhance the utility of large models at the same privacy guarantee of the unshuffled case.
We show that permutation indeed improves the privacy guarantee of DPSGD in theory, but tracking the exact privacy loss on shuffled model is particularly challenging.
arXiv Detail & Related papers (2024-07-22T06:41:59Z) - Semi-supervised Regression Analysis with Model Misspecification and High-dimensional Data [8.619243141968886]
We present an inference framework for estimating regression coefficients in conditional mean models.
We develop an augmented inverse probability weighted (AIPW) method, employing regularized estimators for both propensity score (PS) and outcome regression (OR) models.
Our theoretical findings are verified through extensive simulation studies and a real-world data application.
arXiv Detail & Related papers (2024-06-20T00:34:54Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
Expected predictive information gain (EPIG) is an acquisition function that measures information gain in the space of predictions rather than parameters.
EPIG leads to stronger predictive performance compared with BALD across a range of datasets and models.
arXiv Detail & Related papers (2023-04-17T10:59:57Z) - Adaptive LASSO estimation for functional hidden dynamic geostatistical
model [69.10717733870575]
We propose a novel model selection algorithm based on a penalized maximum likelihood estimator (PMLE) for functional hiddenstatistical models (f-HD)
The algorithm is based on iterative optimisation and uses an adaptive least absolute shrinkage and selector operator (GMSOLAS) penalty function, wherein the weights are obtained by the unpenalised f-HD maximum-likelihood estimators.
arXiv Detail & Related papers (2022-08-10T19:17:45Z) - DP-UTIL: Comprehensive Utility Analysis of Differential Privacy in
Machine Learning [3.822543555265593]
Differential Privacy (DP) has emerged as a rigorous formalism to reason about privacy leakage.
In machine learning (ML), DP has been employed to limit/disclosure of training examples.
For deep neural networks, gradient perturbation results in lowest privacy leakage.
arXiv Detail & Related papers (2021-12-24T08:40:28Z) - BayesFlow can reliably detect Model Misspecification and Posterior
Errors in Amortized Bayesian Inference [0.0]
We conceptualize the types of model misspecification arising in simulation-based inference and systematically investigate the performance of the BayesFlow framework under these misspecifications.
We propose an augmented optimization objective which imposes a probabilistic structure on the latent data space and utilize maximum mean discrepancy (MMD) to detect potentially catastrophic misspecifications.
arXiv Detail & Related papers (2021-12-16T13:25:27Z) - RDP-GAN: A R\'enyi-Differential Privacy based Generative Adversarial
Network [75.81653258081435]
Generative adversarial network (GAN) has attracted increasing attention recently owing to its impressive ability to generate realistic samples with high privacy protection.
However, when GANs are applied on sensitive or private training examples, such as medical or financial records, it is still probable to divulge individuals' sensitive and private information.
We propose a R'enyi-differentially private-GAN (RDP-GAN), which achieves differential privacy (DP) in a GAN by carefully adding random noises on the value of the loss function during training.
arXiv Detail & Related papers (2020-07-04T09:51:02Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users.
An adversary may still be able to infer the private training data by attacking the released model.
Differential privacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models.
arXiv Detail & Related papers (2020-05-01T04:28:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.