IterMiUnet: A lightweight architecture for automatic blood vessel
segmentation
- URL: http://arxiv.org/abs/2208.01485v1
- Date: Tue, 2 Aug 2022 14:33:14 GMT
- Title: IterMiUnet: A lightweight architecture for automatic blood vessel
segmentation
- Authors: Ashish Kumar, R.K. Agrawal, Leve Joseph
- Abstract summary: This paper proposes IterMiUnet, a new lightweight convolution-based segmentation model.
It overcomes its heavily parametrized nature by incorporating the encoder-decoder structure of MiUnet model within it.
The proposed model has a lot of potential to be utilized as a tool for the early diagnosis of many diseases.
- Score: 10.538564380139483
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The automatic segmentation of blood vessels in fundus images can help analyze
the condition of retinal vasculature, which is crucial for identifying various
systemic diseases like hypertension, diabetes, etc. Despite the success of Deep
Learning-based models in this segmentation task, most of them are heavily
parametrized and thus have limited use in practical applications. This paper
proposes IterMiUnet, a new lightweight convolution-based segmentation model
that requires significantly fewer parameters and yet delivers performance
similar to existing models. The model makes use of the excellent segmentation
capabilities of Iternet architecture but overcomes its heavily parametrized
nature by incorporating the encoder-decoder structure of MiUnet model within
it. Thus, the new model reduces parameters without any compromise with the
network's depth, which is necessary to learn abstract hierarchical concepts in
deep models. This lightweight segmentation model speeds up training and
inference time and is potentially helpful in the medical domain where data is
scarce and, therefore, heavily parametrized models tend to overfit. The
proposed model was evaluated on three publicly available datasets: DRIVE,
STARE, and CHASE-DB1. Further cross-training and inter-rater variability
evaluations have also been performed. The proposed model has a lot of potential
to be utilized as a tool for the early diagnosis of many diseases.
Related papers
- Low-Rank Continual Pyramid Vision Transformer: Incrementally Segment Whole-Body Organs in CT with Light-Weighted Adaptation [10.746776960260297]
We propose a new continual whole-body organ segmentation model with light-weighted low-rank adaptation (LoRA)
We first train and freeze a pyramid vision transformer (PVT) base segmentation model on the initial task, then continually add light-weighted trainable LoRA parameters to the frozen model for each new learning task.
Our proposed model continually segments new organs without catastrophic forgetting and meanwhile maintaining a low parameter increasing rate.
arXiv Detail & Related papers (2024-10-07T02:00:13Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Structured Model Pruning for Efficient Inference in Computational Pathology [2.9687381456164004]
We develop a methodology for pruning the widely used U-Net-style architectures in biomedical imaging.
We empirically demonstrate that pruning can compress models by at least 70% with a negligible drop in performance.
arXiv Detail & Related papers (2024-04-12T22:05:01Z) - Latent variable model for high-dimensional point process with structured missingness [4.451479907610764]
Longitudinal data are important in numerous fields, such as healthcare, sociology and seismology.
Real-world datasets can be high-dimensional, contain structured missingness patterns, and measurement time points can be governed by an unknown process.
We propose a flexible and efficient latent-variable model that is capable of addressing all these limitations.
arXiv Detail & Related papers (2024-02-08T15:41:48Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - The Importance of Downstream Networks in Digital Pathology Foundation Models [1.689369173057502]
We evaluate seven feature extractor models across three different datasets with 162 different aggregation model configurations.
We find that the performance of many current feature extractor models is notably similar.
arXiv Detail & Related papers (2023-11-29T16:54:25Z) - Unlocking the Heart Using Adaptive Locked Agnostic Networks [4.613517417540153]
Supervised training of deep learning models for medical imaging applications requires a significant amount of labeled data.
To address this limitation, we introduce the Adaptive Locked Agnostic Network (ALAN)
ALAN involves self-supervised visual feature extraction using a large backbone model to produce robust semantic self-segmentation.
Our findings demonstrate that the self-supervised backbone model robustly identifies anatomical subregions of the heart in an apical four-chamber view.
arXiv Detail & Related papers (2023-09-21T09:06:36Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
We design a more capable parameter-sharing architecture based on matrix product operator (MPO)
MPO decomposition can reorganize and factorize the information of a parameter matrix into two parts.
Our architecture shares the central tensor across all layers for reducing the model size.
arXiv Detail & Related papers (2023-03-27T02:34:09Z) - Part-Based Models Improve Adversarial Robustness [57.699029966800644]
We show that combining human prior knowledge with end-to-end learning can improve the robustness of deep neural networks.
Our model combines a part segmentation model with a tiny classifier and is trained end-to-end to simultaneously segment objects into parts.
Our experiments indicate that these models also reduce texture bias and yield better robustness against common corruptions and spurious correlations.
arXiv Detail & Related papers (2022-09-15T15:41:47Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.