Countering Mainstream Bias via End-to-End Adaptive Local Learning
- URL: http://arxiv.org/abs/2404.08887v1
- Date: Sat, 13 Apr 2024 03:17:33 GMT
- Title: Countering Mainstream Bias via End-to-End Adaptive Local Learning
- Authors: Jinhao Pan, Ziwei Zhu, Jianling Wang, Allen Lin, James Caverlee,
- Abstract summary: Collaborative filtering (CF) based recommendations suffer from mainstream bias.
We propose a novel end-To-end Adaptive Local Learning framework to provide high-quality recommendations to both mainstream and niche users.
- Score: 17.810760161534247
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Collaborative filtering (CF) based recommendations suffer from mainstream bias -- where mainstream users are favored over niche users, leading to poor recommendation quality for many long-tail users. In this paper, we identify two root causes of this mainstream bias: (i) discrepancy modeling, whereby CF algorithms focus on modeling mainstream users while neglecting niche users with unique preferences; and (ii) unsynchronized learning, where niche users require more training epochs than mainstream users to reach peak performance. Targeting these causes, we propose a novel end-To-end Adaptive Local Learning (TALL) framework to provide high-quality recommendations to both mainstream and niche users. TALL uses a loss-driven Mixture-of-Experts module to adaptively ensemble experts to provide customized local models for different users. Further, it contains an adaptive weight module to synchronize the learning paces of different users by dynamically adjusting weights in the loss. Extensive experiments demonstrate the state-of-the-art performance of the proposed model. Code and data are provided at \url{https://github.com/JP-25/end-To-end-Adaptive-Local-Leanring-TALL-}
Related papers
- Efficient and Robust Regularized Federated Recommendation [52.24782464815489]
The recommender system (RSRS) addresses both user preference and privacy concerns.
We propose a novel method that incorporates non-uniform gradient descent to improve communication efficiency.
RFRecF's superior robustness compared to diverse baselines.
arXiv Detail & Related papers (2024-11-03T12:10:20Z) - ComPO: Community Preferences for Language Model Personalization [122.54846260663922]
ComPO is a method to personalize preference optimization in language models.
We collect and release ComPRed, a question answering dataset with community-level preferences from Reddit.
arXiv Detail & Related papers (2024-10-21T14:02:40Z) - Personalizing Reinforcement Learning from Human Feedback with Variational Preference Learning [12.742158403867002]
Reinforcement Learning from Human Feedback is a powerful paradigm for aligning foundation models to human values and preferences.
Current RLHF techniques cannot account for the naturally occurring differences in individual human preferences across a diverse population.
We develop a class of multimodal RLHF methods to address the need for pluralistic alignment.
arXiv Detail & Related papers (2024-08-19T15:18:30Z) - Causal Structure Representation Learning of Confounders in Latent Space
for Recommendation [6.839357057621987]
Inferring user preferences from the historical feedback of users is a valuable problem in recommender systems.
We consider the influence of confounders, disentangle them from user preferences in the latent space, and employ causal graphs to model their interdependencies.
arXiv Detail & Related papers (2023-11-02T08:46:07Z) - Separating and Learning Latent Confounders to Enhancing User Preferences Modeling [6.0853798070913845]
We propose a novel framework, Separating and Learning Latent Confounders For Recommendation (SLFR)
SLFR obtains the representation of unmeasured confounders to identify the counterfactual feedback by disentangling user preferences and unmeasured confounders.
Experiments in five real-world datasets validate the advantages of our method.
arXiv Detail & Related papers (2023-11-02T08:42:50Z) - Personalizing Intervened Network for Long-tailed Sequential User
Behavior Modeling [66.02953670238647]
Tail users suffer from significantly lower-quality recommendation than the head users after joint training.
A model trained on tail users separately still achieve inferior results due to limited data.
We propose a novel approach that significantly improves the recommendation performance of the tail users.
arXiv Detail & Related papers (2022-08-19T02:50:19Z) - Linear Speedup in Personalized Collaborative Learning [69.45124829480106]
Personalization in federated learning can improve the accuracy of a model for a user by trading off the model's bias.
We formalize the personalized collaborative learning problem as optimization of a user's objective.
We explore conditions under which we can optimally trade-off their bias for a reduction in variance.
arXiv Detail & Related papers (2021-11-10T22:12:52Z) - Learning User Preferences in Non-Stationary Environments [42.785926822853746]
We introduce a novel model for online non-stationary recommendation systems.
We show that our algorithm outperforms other static algorithms even when preferences do not change over time.
arXiv Detail & Related papers (2021-01-29T10:26:16Z) - Multi-Center Federated Learning [62.57229809407692]
This paper proposes a novel multi-center aggregation mechanism for federated learning.
It learns multiple global models from the non-IID user data and simultaneously derives the optimal matching between users and centers.
Our experimental results on benchmark datasets show that our method outperforms several popular federated learning methods.
arXiv Detail & Related papers (2020-05-03T09:14:31Z) - Unsupervised Model Personalization while Preserving Privacy and
Scalability: An Open Problem [55.21502268698577]
This work investigates the task of unsupervised model personalization, adapted to continually evolving, unlabeled local user images.
We provide a novel Dual User-Adaptation framework (DUA) to explore the problem.
This framework flexibly disentangles user-adaptation into model personalization on the server and local data regularization on the user device.
arXiv Detail & Related papers (2020-03-30T09:35:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.