論文の概要: DeDoDe v2: Analyzing and Improving the DeDoDe Keypoint Detector
- arxiv url: http://arxiv.org/abs/2404.08928v1
- Date: Sat, 13 Apr 2024 08:36:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 18:03:29.226013
- Title: DeDoDe v2: Analyzing and Improving the DeDoDe Keypoint Detector
- Title(参考訳): DeDoDe v2: DeDoDeキーポイント検出器の解析と改善
- Authors: Johan Edstedt, Georg Bökman, Zhenjun Zhao,
- Abstract要約: 我々は最近提案されたDeDoDeキーポイント検出器の解析と改良を行った。
まず、DeDoDeキーポイントが一緒にクラスタ化される傾向があることに気付きます。
第2に、データ拡張に関する問題に対処する。
- 参考スコア(独自算出の注目度): 4.62314083305763
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we analyze and improve into the recently proposed DeDoDe keypoint detector. We focus our analysis on some key issues. First, we find that DeDoDe keypoints tend to cluster together, which we fix by performing non-max suppression on the target distribution of the detector during training. Second, we address issues related to data augmentation. In particular, the DeDoDe detector is sensitive to large rotations. We fix this by including 90-degree rotations as well as horizontal flips. Finally, the decoupled nature of the DeDoDe detector makes evaluation of downstream usefulness problematic. We fix this by matching the keypoints with a pretrained dense matcher (RoMa) and evaluating two-view pose estimates. We find that the original long training is detrimental to performance, and therefore propose a much shorter training schedule. We integrate all these improvements into our proposed detector DeDoDe v2 and evaluate it with the original DeDoDe descriptor on the MegaDepth-1500 and IMC2022 benchmarks. Our proposed detector significantly increases pose estimation results, notably from 75.9 to 78.3 mAA on the IMC2022 challenge. Code and weights are available at https://github.com/Parskatt/DeDoDe
- Abstract(参考訳): 本稿では,最近提案されたDeDoDeキーポイント検出器の解析と改良を行う。
分析はいくつかの重要な問題に焦点を合わせます。
まず、DeDoDeキーポイントがクラスタ化される傾向にあり、トレーニング中に検出器のターゲット分布を非最大に抑えることで修正する。
第2に、データ拡張に関する問題に対処する。
特に、DeDoDe検出器は大きな回転に敏感である。
私たちはこれを90度の回転と水平方向のフリップによって修正します。
最後に、DeDoDe検出器の分離特性は下流の有用性を問題にしている。
キーポイントと事前訓練された高密度マーカ(RoMa)とをマッチングし、2視点ポーズ推定を評価することでこれを修正する。
元々の長期トレーニングはパフォーマンスに有害であり,より短いトレーニングスケジュールを提案する。
提案した検出器であるDeDoDe v2にこれらの改良を取り入れ,MegaDepth-1500およびIMC2022ベンチマークのオリジナルのDeDoDe記述子で評価する。
提案した検出器は, IMC2022の課題において, 75.9mAAから78.3mAAに比例して, ポーズ推定結果を著しく向上させた。
コードとウェイトはhttps://github.com/Parskatt/DeDoDeで入手できる。
関連論文リスト
- MutDet: Mutually Optimizing Pre-training for Remote Sensing Object Detection [36.478530086163744]
本研究では,MutDetと呼ばれるリモートセンシングオブジェクト検出のための,Mutally最適化事前学習フレームワークを提案する。
MutDetはオブジェクトの埋め込みを融合し、検出器は最後のエンコーダ層に双方向に機能し、情報インタラクションを強化する。
様々な環境での実験は、新しい最先端の転送性能を示している。
論文 参考訳(メタデータ) (2024-07-13T15:28:15Z) - Simplifying Two-Stage Detectors for On-Device Inference in Remote Sensing [0.7305342793164903]
本研究では,2段階物体検出器のモデル簡易化手法を提案する。
本手法は,DOTAv1.5データセットの2.1%以内の精度で計算コストを61.2%まで削減する。
論文 参考訳(メタデータ) (2024-04-11T00:45:10Z) - SpirDet: Towards Efficient, Accurate and Lightweight Infrared Small
Target Detector [60.42293239557962]
我々は、赤外線小ターゲットの効率的な検出のための新しいアプローチであるSpirDetを提案する。
新しいデュアルブランチスパースデコーダを用いて特徴写像を復元する。
大規模な実験により、提案されたSpirDetは最先端モデルよりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2024-02-08T05:06:14Z) - Tucker Bilinear Attention Network for Multi-scale Remote Sensing Object
Detection [10.060030309684953]
リモートセンシング対象の大規模変動は、VHRリモートセンシング対象検出における大きな課題の1つである。
本稿では2つの新しいモジュール, Guided Attention と Tucker Bilinear Attention を提案する。
2つのモジュールに基づいて、我々は新しいマルチスケールリモートセンシングオブジェクト検出フレームワークを構築した。
論文 参考訳(メタデータ) (2023-03-09T15:20:03Z) - OSKDet: Towards Orientation-sensitive Keypoint Localization for Rotated
Object Detection [0.0]
オリエンテーション感度キーポイントに基づく回転検出器OSKDetを提案する。
ターゲットを特徴付けるキーポイントのセットを採用し、roi上のキーポイントヒートマップを予測して回転したターゲットを形成する。
DOTAは77.81%、HRSC2016は89.91%、UCAS-AODは97.18%である。
論文 参考訳(メタデータ) (2021-04-18T03:40:52Z) - Robust and Accurate Object Detection via Adversarial Learning [111.36192453882195]
この研究は、逆の例を探索することで、物体検出器の微調整段階を補強する。
提案手法は,オブジェクト検出ベンチマークにおいて,最先端のEfficientDetsの性能を+1.1mAP向上させる。
論文 参考訳(メタデータ) (2021-03-23T19:45:26Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
本稿では,分類に基づく比較的研究の少ない方法論について検討する。
我々は2つの側面でフロンティアを推し進めるための新しい手法を提案する。
航空画像のための大規模公開データセットの実験と視覚解析は,我々のアプローチの有効性を示している。
論文 参考訳(メタデータ) (2020-11-19T05:42:02Z) - A Self-Training Approach for Point-Supervised Object Detection and
Counting in Crowds [54.73161039445703]
本稿では,ポイントレベルのアノテーションのみを用いて訓練された典型的なオブジェクト検出を可能にする,新たな自己学習手法を提案する。
トレーニング中、利用可能なポイントアノテーションを使用して、オブジェクトの中心点の推定を監督する。
実験の結果,本手法は検出タスクとカウントタスクの両方において,最先端のポイント管理手法よりも有意に優れていた。
論文 参考訳(メタデータ) (2020-07-25T02:14:42Z) - Detection as Regression: Certified Object Detection by Median Smoothing [50.89591634725045]
この研究は、ランダム化平滑化による認定分類の最近の進歩によって動機付けられている。
我々は、$ell$-bounded攻撃に対するオブジェクト検出のための、最初のモデル非依存、トレーニング不要、認定された防御条件を得る。
論文 参考訳(メタデータ) (2020-07-07T18:40:19Z) - Solving Missing-Annotation Object Detection with Background
Recalibration Loss [49.42997894751021]
本稿では,新しい,かつ困難な検出シナリオに焦点を当てる。 真のオブジェクト/インスタンスの大部分は,データセットにラベル付けされていない。
従来, ソフトサンプリングを用いて, 正の例と重なり合うRoIsの勾配を再重み付けする手法が提案されてきた。
本稿では、予め定義されたIoU閾値と入力画像に基づいて損失信号を自動的に校正できる、バックグラウンド校正損失(BRL)と呼ばれる優れた解を提案する。
論文 参考訳(メタデータ) (2020-02-12T23:11:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。