論文の概要: Tucker Bilinear Attention Network for Multi-scale Remote Sensing Object
Detection
- arxiv url: http://arxiv.org/abs/2303.05329v2
- Date: Sun, 28 May 2023 06:39:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-31 01:19:30.175194
- Title: Tucker Bilinear Attention Network for Multi-scale Remote Sensing Object
Detection
- Title(参考訳): マルチスケールリモートセンシングオブジェクト検出のためのTucker Bilinear Attention Network
- Authors: Tao Chen, Ruirui Li, Jiafeng Fu, and Daguang Jiang
- Abstract要約: リモートセンシング対象の大規模変動は、VHRリモートセンシング対象検出における大きな課題の1つである。
本稿では2つの新しいモジュール, Guided Attention と Tucker Bilinear Attention を提案する。
2つのモジュールに基づいて、我々は新しいマルチスケールリモートセンシングオブジェクト検出フレームワークを構築した。
- 参考スコア(独自算出の注目度): 10.060030309684953
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Object detection on VHR remote sensing images plays a vital role in
applications such as urban planning, land resource management, and rescue
missions. The large-scale variation of the remote-sensing targets is one of the
main challenges in VHR remote-sensing object detection. Existing methods
improve the detection accuracy of high-resolution remote sensing objects by
improving the structure of feature pyramids and adopting different attention
modules. However, for small targets, there still be seriously missed detections
due to the loss of key detail features. There is still room for improvement in
the way of multiscale feature fusion and balance. To address this issue, this
paper proposes two novel modules: Guided Attention and Tucker Bilinear
Attention, which are applied to the stages of early fusion and late fusion
respectively. The former can effectively retain clean key detail features, and
the latter can better balance features through semantic-level correlation
mining. Based on two modules, we build a new multi-scale remote sensing object
detection framework. No bells and whistles. The proposed method largely
improves the average precisions of small objects and achieves the highest mean
average precisions compared with 9 state-of-the-art methods on DOTA, DIOR, and
NWPU VHR-10.Code and models are available at
https://github.com/Shinichict/GTNet.
- Abstract(参考訳): vhrリモートセンシング画像における物体検出は,都市計画,土地資源管理,救助活動などにおいて重要な役割を担っている。
リモートセンシング対象の大規模変動は、VHRリモートセンシング対象検出における大きな課題の1つである。
既存の手法では,特徴ピラミッドの構造を改善し,異なる注意モジュールを採用することで,高解像度リモートセンシング物体の検出精度を向上させる。
しかし、小さなターゲットでは、重要な詳細機能が失われているため、検出が著しく欠落している。
マルチスケールの機能融合とバランスの方法にはまだ改善の余地があります。
本稿では, 早期核融合の段階と後期核融合の段階にそれぞれ適用可能な2つの新しいモジュール, Guided Attention と Tucker Bilinear Attention を提案する。
前者はクリーンなキーの詳細機能を効果的に保持でき、後者はセマンティックレベルの相関マイニングによって特徴のバランスを改善することができる。
2つのモジュールに基づいて、我々は新しいマルチスケールリモートセンシングオブジェクト検出フレームワークを構築した。
鐘も笛もない。
提案手法は小型オブジェクトの平均精度を大幅に向上させ,dota,dior,nwpu vhr-10.codeの9つの最先端手法と比較して,平均精度が最も高い。
関連論文リスト
- Single-Point Supervised High-Resolution Dynamic Network for Infrared Small Target Detection [7.0456782736205685]
単一点教師付き高分解能ダイナミックネットワーク(SSHD-Net)を提案する。
単一点監視のみを用いて、最先端(SOTA)検出性能を実現する。
公開データセット NUDT-SIRST と IRSTD-1k の実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-08-04T09:44:47Z) - Visible and Clear: Finding Tiny Objects in Difference Map [50.54061010335082]
本稿では,検出モデルに自己再構成機構を導入し,それと微小物体との強い相関関係を明らかにする。
具体的には、再構成画像と入力の差分マップを構築して、検出器の首の内側に再構成ヘッドを配置し、小さな物体に対して高い感度を示す。
さらに、小さな特徴表現をより明確にするために、差分マップガイド機能拡張(DGFE)モジュールを開発する。
論文 参考訳(メタデータ) (2024-05-18T12:22:26Z) - Better Sampling, towards Better End-to-end Small Object Detection [7.7473020808686694]
限られた特性と高密度と相互重なり合いのため、小さな物体検出は不満足なままである。
エンド・ツー・エンド・フレームワークにおけるサンプリングの強化手法を提案する。
我々のモデルは、VisDroneデータセット上での最先端(SOTA)よりも平均精度(AP)が2.9%向上することを示す。
論文 参考訳(メタデータ) (2024-05-17T04:37:44Z) - Small Object Detection by DETR via Information Augmentation and Adaptive
Feature Fusion [4.9860018132769985]
RT-DETRモデルは、リアルタイムオブジェクト検出では良好に動作するが、小さなオブジェクト検出精度では不十分である。
異なるレベルから各特徴マップに学習可能なパラメータを割り当てる適応的特徴融合アルゴリズムを提案する。
これにより、異なるスケールでオブジェクトの特徴をキャプチャするモデルの能力が向上し、小さなオブジェクトを検出する精度が向上する。
論文 参考訳(メタデータ) (2024-01-16T00:01:23Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
変換器を用いた赤外線小径目標検出手法を提案する。
画像特徴の相互作用情報をより広い範囲で学習するために,変換器の自己認識機構を採用する。
最小限のターゲットの機能を学習するための機能拡張モジュールも設計しています。
論文 参考訳(メタデータ) (2021-09-29T12:23:41Z) - Multi-patch Feature Pyramid Network for Weakly Supervised Object
Detection in Optical Remote Sensing Images [39.25541709228373]
マルチパッチ特徴ピラミッドネットワーク(MPFP-Net)を用いたオブジェクト検出のための新しいアーキテクチャを提案する。
MPFP-Netは、トレーニング中の最も差別的なパッチのみを追求する現在のモデルとは異なる。
残余値の正則化と核融合遷移層を厳密にノルム保存する有効な方法を提案する。
論文 参考訳(メタデータ) (2021-08-18T09:25:39Z) - CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented
Object Detection in Remote Sensing Images [0.9462808515258465]
本稿では,物体検出における識別的特徴の役割について論じる。
次に,検出精度を向上させるために,cfc-net (critical feature capture network) を提案する。
本手法は多くの最先端手法と比較して優れた検出性能が得られることを示す。
論文 参考訳(メタデータ) (2021-01-18T02:31:09Z) - MRDet: A Multi-Head Network for Accurate Oriented Object Detection in
Aerial Images [51.227489316673484]
水平アンカーから変換された指向性提案を生成するために、任意指向領域提案ネットワーク(AO-RPN)を提案する。
正確なバウンディングボックスを得るために,検出タスクを複数のサブタスクに分離し,マルチヘッドネットワークを提案する。
各ヘッドは、対応するタスクに最適な特徴を学習するために特別に設計されており、ネットワークがオブジェクトを正確に検出することができる。
論文 参考訳(メタデータ) (2020-12-24T06:36:48Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
適応型単一段アンカーフリーベースアーキテクチャにおける2つのモードの効果的かつ効率的な多重スペクトル融合法を提案する。
我々は,直接的境界ボックス予測ではなく,対象の中心と規模に基づく歩行者表現の学習を目指す。
その結果,小型歩行者の検出における本手法の有効性が示唆された。
論文 参考訳(メタデータ) (2020-08-19T13:13:01Z) - NETNet: Neighbor Erasing and Transferring Network for Better Single Shot
Object Detection [170.30694322460045]
我々は、ピラミッドの特徴を再設定し、スケールアウェアな特徴を探索する新しいNeighbor Erasing and Transferring(NET)メカニズムを提案する。
NETNetと呼ばれるシングルショットネットワークは、スケールアウェアなオブジェクト検出のために構築されている。
論文 参考訳(メタデータ) (2020-01-18T15:21:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。