ProSAS: An O-RAN Approach to Spectrum Sharing between NR and LTE
- URL: http://arxiv.org/abs/2404.09110v1
- Date: Sun, 14 Apr 2024 01:02:19 GMT
- Title: ProSAS: An O-RAN Approach to Spectrum Sharing between NR and LTE
- Authors: Sneihil Gopal, David Griffith, Richard A. Rouil, Chunmei Liu,
- Abstract summary: We introduce the Proactive Spectrum Adaptation Scheme (ProSAS), a data-driven, O-RAN-compatible spectrum sharing solution.
ProSAS is an intelligent radio resource demand prediction and management scheme for intent-driven spectrum management.
We illustrate the effectiveness of this solution using real-world LTE resource usage data and synthetically generated NR data.
- Score: 1.906179410714637
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Open Radio Access Network (O-RAN), an industry-driven initiative, utilizes intelligent Radio Access Network (RAN) controllers and open interfaces to facilitate efficient spectrum sharing between LTE and NR RANs. In this paper, we introduce the Proactive Spectrum Adaptation Scheme (ProSAS), a data-driven, O-RAN-compatible spectrum sharing solution. ProSAS is an intelligent radio resource demand prediction and management scheme for intent-driven spectrum management that minimizes surplus or deficit experienced by both RANs. We illustrate the effectiveness of this solution using real-world LTE resource usage data and synthetically generated NR data. Lastly, we discuss a high-level O-RAN-compatible architecture of the proposed solution.
Related papers
- OpenRANet: Neuralized Spectrum Access by Joint Subcarrier and Power Allocation with Optimization-based Deep Learning [47.468242164786275]
Next-generation RANs will feature an AI-native interface for wireless cellular networks.
In this paper, we address the challenge of making joint subcarrier power allocation in OpenRANet.
arXiv Detail & Related papers (2024-08-31T13:10:48Z) - AdapShare: An RL-Based Dynamic Spectrum Sharing Solution for O-RAN [1.906179410714637]
AdapShare is an ORAN-compatible solution leveraging Reinforcement Learning for intent-based spectrum management.
By employing RL agents, AdapShare intelligently learns network demand patterns and uses them to allocate resources.
AdapShare outperforms a quasi-static resource allocation scheme based on long-term network demand statistics.
arXiv Detail & Related papers (2024-08-29T18:10:36Z) - Fast and Accurate Cooperative Radio Map Estimation Enabled by GAN [63.90647197249949]
In the 6G era, real-time radio resource monitoring and management are urged to support diverse wireless-empowered applications.
In this paper, we present a cooperative radio map estimation approach enabled by the generative adversarial network (GAN)
arXiv Detail & Related papers (2024-02-05T05:01:28Z) - Safe and Accelerated Deep Reinforcement Learning-based O-RAN Slicing: A
Hybrid Transfer Learning Approach [20.344810727033327]
We propose and design a hybrid TL-aided approach to provide safe and accelerated convergence in DRL-based O-RAN slicing.
The proposed hybrid approach shows at least: 7.7% and 20.7% improvements in the average initial reward value and the percentage of converged scenarios.
arXiv Detail & Related papers (2023-09-13T18:58:34Z) - Decentralized Learning over Wireless Networks: The Effect of Broadcast
with Random Access [56.91063444859008]
We investigate the impact of broadcast transmission and probabilistic random access policy on the convergence performance of D-SGD.
Our results demonstrate that optimizing the access probability to maximize the expected number of successful links is a highly effective strategy for accelerating the system convergence.
arXiv Detail & Related papers (2023-05-12T10:32:26Z) - Intelligent Load Balancing and Resource Allocation in O-RAN: A
Multi-Agent Multi-Armed Bandit Approach [4.834203844100679]
We propose a multi-agent multi-armed bandit for load balancing and resource allocation (mmLBRA) scheme.
We also present the mmLBRA-LB and mmLBRA-RA sub-schemes that can operate independently in non-realtime RAN intelligent controller (Non-RT RIC) and near-RT RIC, respectively.
arXiv Detail & Related papers (2023-03-25T04:42:30Z) - Sparsity-Aware Intelligent Massive Random Access Control in Open RAN: A
Reinforcement Learning Based Approach [61.74489383629319]
Massive random access of devices in the emerging Open Radio Access Network (O-RAN) brings great challenge to the access control and management.
reinforcement-learning (RL)-assisted scheme of closed-loop access control is proposed to preserve sparsity of access requests.
Deep-RL-assisted SAUD is proposed to resolve highly complex environments with continuous and high-dimensional state and action spaces.
arXiv Detail & Related papers (2023-03-05T12:25:49Z) - Evolutionary Deep Reinforcement Learning for Dynamic Slice Management in
O-RAN [11.464582983164991]
New open radio access network (O-RAN) with distinguishing features such as flexible design, disaggregated virtual and programmable components, and intelligent closed-loop control was developed.
O-RAN slicing is being investigated as a critical strategy for ensuring network quality of service (QoS) in the face of changing circumstances.
This paper introduces a novel framework able to manage the network slices through provisioned resources intelligently.
arXiv Detail & Related papers (2022-08-30T17:00:53Z) - State-Augmented Learnable Algorithms for Resource Management in Wireless
Networks [124.89036526192268]
We propose a state-augmented algorithm for solving resource management problems in wireless networks.
We show that the proposed algorithm leads to feasible and near-optimal RRM decisions.
arXiv Detail & Related papers (2022-07-05T18:02:54Z) - Optimal Power Allocation for Rate Splitting Communications with Deep
Reinforcement Learning [61.91604046990993]
This letter introduces a novel framework to optimize the power allocation for users in a Rate Splitting Multiple Access network.
In the network, messages intended for users are split into different parts that are a single common part and respective private parts.
arXiv Detail & Related papers (2021-07-01T06:32:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.