論文の概要: Advanced Intelligent Optimization Algorithms for Multi-Objective Optimal Power Flow in Future Power Systems: A Review
- arxiv url: http://arxiv.org/abs/2404.09203v1
- Date: Sun, 14 Apr 2024 09:44:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 15:07:53.713203
- Title: Advanced Intelligent Optimization Algorithms for Multi-Objective Optimal Power Flow in Future Power Systems: A Review
- Title(参考訳): 次世代電力システムにおける多目的最適潮流の高度知能最適化アルゴリズム
- Authors: Yuyan Li,
- Abstract要約: 多目的最適潮流(MOPF)へのインテリジェント最適化アルゴリズムの適用について
再生可能エネルギーの統合、スマートグリッド、エネルギー需要の増加による課題を掘り下げている。
アルゴリズムの選択は、現在ある特定のMOPF問題に近づき、ハイブリッドアプローチは大きな可能性を秘めている。
- 参考スコア(独自算出の注目度): 1.450405446885067
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This review explores the application of intelligent optimization algorithms to Multi-Objective Optimal Power Flow (MOPF) in enhancing modern power systems. It delves into the challenges posed by the integration of renewables, smart grids, and increasing energy demands, focusing on evolutionary algorithms, swarm intelligence, and deep reinforcement learning. The effectiveness, scalability, and application of these algorithms are analyzed, with findings suggesting that algorithm selection is contingent on the specific MOPF problem at hand, and hybrid approaches offer significant promise. The importance of standard test systems for verifying solutions and the role of software tools in facilitating analysis are emphasized. Future research is directed towards exploiting machine learning for dynamic optimization, embracing decentralized energy systems, and adapting to evolving policy frameworks to improve power system efficiency and sustainability. This review aims to advance MOPF research by highlighting state-of-the-art methodologies and encouraging the development of innovative solutions for future energy challenges.
- Abstract(参考訳): 本稿では,多目的最適潮流(MOPF)へのインテリジェント最適化アルゴリズムの適用について検討する。
再生可能エネルギーの統合、スマートグリッド、エネルギー需要の増加による課題を掘り下げ、進化的アルゴリズム、群知性、深層強化学習に重点を置いている。
これらのアルゴリズムの有効性,拡張性,適用性について分析し,アルゴリズム選択が目前にある特定のMOPF問題に即していることを示すとともに,ハイブリッドアプローチが有望であることを示す。
ソリューションを検証するための標準的なテストシステムの重要性と、分析を容易にするためのソフトウェアツールの役割が強調される。
将来の研究は、動的最適化に機械学習を活用すること、分散型エネルギーシステムを採用すること、そして電力システムの効率性と持続可能性を改善するために進化する政策フレームワークに適応することを目的としている。
本論は、最先端の方法論を強調し、将来のエネルギー課題に対する革新的なソリューション開発を促進することで、MOPF研究を進めることを目的としている。
関連論文リスト
- Transforming the Hybrid Cloud for Emerging AI Workloads [81.15269563290326]
このホワイトペーパーでは、AIワークロードの複雑さの増大に対応するために、ハイブリッドクラウドシステムを変革することを想定している。
提案したフレームワークは、エネルギー効率、性能、コスト効率において重要な課題に対処する。
この共同イニシアチブは、ハイブリッドクラウドをセキュアで効率的で持続可能なプラットフォームとして確立することを目的としています。
論文 参考訳(メタデータ) (2024-11-20T11:57:43Z) - Deep Insights into Automated Optimization with Large Language Models and Evolutionary Algorithms [3.833708891059351]
大きな言語モデル(LLM)と進化的アルゴリズム(EA)は、制限を克服し、最適化をより自動化するための有望な新しいアプローチを提供する。
LLMは最適化戦略の生成、洗練、解釈が可能な動的エージェントとして機能する。
EAは進化作用素を通して、複雑な解空間を効率的に探索する。
論文 参考訳(メタデータ) (2024-10-28T09:04:49Z) - AI-Driven Approaches for Optimizing Power Consumption: A Comprehensive Survey [0.0]
電力最適化が重要である主な理由は、環境効果の低減、運転コストの低減、安定的で持続可能なエネルギー供給である。
電力最適化と人工知能(AI)の統合は、エネルギーの生成、使用、分散の方法を変えるために不可欠である。
AI駆動のアルゴリズムと予測分析によって、電力使用傾向のリアルタイム監視と分析が可能になる。
論文 参考訳(メタデータ) (2024-06-22T04:42:37Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
本稿では,Vehicular Edge Computingにおける共同DNNパーティショニング,タスクオフロード,リソース割り当ての問題を定式化する。
我々の目標は、時間とともにシステムの安定性を保証しながら、DNNベースのタスク完了時間を最小化することである。
拡散モデルの革新的利用を取り入れたマルチエージェント拡散に基づく深層強化学習(MAD2RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-11T06:31:03Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Towards Efficient Generative Large Language Model Serving: A Survey from
Algorithms to Systems [14.355768064425598]
生成型大規模言語モデル(LLM)が最前線に立ち、データとのインタラクション方法に革命をもたらします。
しかし、これらのモデルをデプロイする際の計算強度とメモリ消費は、効率性の観点から大きな課題を呈している。
本研究は,機械学習システム(MLSys)研究の観点から,効率的なLCM提供手法の必要性について考察する。
論文 参考訳(メタデータ) (2023-12-23T11:57:53Z) - Model-Informed Generative Adversarial Network (MI-GAN) for Learning
Optimal Power Flow [5.407198609685119]
最適電力フロー(OPF)問題は、電力系統の運用において重要な要素であり、電力系統にたらされる再生可能エネルギーの変動、断続性、予測不能により、解決がますます困難になる。
ニューラルネットワークのようなディープラーニング技術は、最近、データの利用によってOPF問題を解決する際の計算効率を改善するために開発されている。
本稿では,不確実性下でOPFを解決するための最適化モデルインフォームド・ジェネレーティブ・逆数ネットワーク(MI-GAN)フレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-04T00:37:37Z) - Coverage and Capacity Optimization in STAR-RISs Assisted Networks: A
Machine Learning Approach [102.00221938474344]
再構成可能なインテリジェントサーフェス (STAR-RIS) アシストネットワークを同時に送信および反射するカバレッジとキャパシティ最適化のための新しいモデルを提案する。
損失関数ベースの更新戦略はコアポイントであり、各更新時にmin-normソルバによってカバレッジとキャパシティの両方の損失関数の重みを計算することができる。
解析結果から,提案手法は固定重みに基づくMOアルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-04-13T13:52:22Z) - A survey on multi-objective hyperparameter optimization algorithms for
Machine Learning [62.997667081978825]
本稿では,多目的HPOアルゴリズムに関する2014年から2020年にかけての文献を体系的に調査する。
メタヒューリスティック・ベース・アルゴリズムとメタモデル・ベース・アルゴリズム,および両者を混合したアプローチを区別する。
また,多目的HPO法と今後の研究方向性を比較するための品質指標についても論じる。
論文 参考訳(メタデータ) (2021-11-23T10:22:30Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。