Advanced Intelligent Optimization Algorithms for Multi-Objective Optimal Power Flow in Future Power Systems: A Review
- URL: http://arxiv.org/abs/2404.09203v2
- Date: Sat, 3 Aug 2024 10:04:25 GMT
- Title: Advanced Intelligent Optimization Algorithms for Multi-Objective Optimal Power Flow in Future Power Systems: A Review
- Authors: Yuyan Li,
- Abstract summary: Review explores the application of intelligent optimization algorithms to Multi-Objective Optimal Power Flow (MOPF)
It delves into the challenges posed by the integration of renewables, smart grids, and increasing energy demands.
Findings suggest that algorithm selection is contingent on the specific MOPF problem at hand, and hybrid approaches offer significant promise.
- Score: 1.450405446885067
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This review explores the application of intelligent optimization algorithms to Multi-Objective Optimal Power Flow (MOPF) in enhancing modern power systems. It delves into the challenges posed by the integration of renewables, smart grids, and increasing energy demands, focusing on evolutionary algorithms, swarm intelligence, and deep reinforcement learning. The effectiveness, scalability, and application of these algorithms are analyzed, with findings suggesting that algorithm selection is contingent on the specific MOPF problem at hand, and hybrid approaches offer significant promise. The importance of standard test systems for verifying solutions and the role of software tools in facilitating analysis are emphasized. Future research is directed towards exploiting machine learning for dynamic optimization, embracing decentralized energy systems, and adapting to evolving policy frameworks to improve power system efficiency and sustainability. This review aims to advance MOPF research by highlighting state-of-the-art methodologies and encouraging the development of innovative solutions for future energy challenges.
Related papers
- Transforming the Hybrid Cloud for Emerging AI Workloads [81.15269563290326]
This white paper envisions transforming hybrid cloud systems to meet the growing complexity of AI workloads.
The proposed framework addresses critical challenges in energy efficiency, performance, and cost-effectiveness.
This joint initiative aims to establish hybrid clouds as secure, efficient, and sustainable platforms.
arXiv Detail & Related papers (2024-11-20T11:57:43Z) - Deep Insights into Automated Optimization with Large Language Models and Evolutionary Algorithms [3.833708891059351]
Large Language Models (LLMs) and Evolutionary Algorithms (EAs) offer promising new approach to overcome limitations and make optimization more automated.
LLMs act as dynamic agents that can generate, refine, and interpret optimization strategies.
EAs efficiently explore complex solution spaces through evolutionary operators.
arXiv Detail & Related papers (2024-10-28T09:04:49Z) - AI-Driven Approaches for Optimizing Power Consumption: A Comprehensive Survey [0.0]
Reduced environmental effect, lower operating costs, and a stable and sustainable energy supply are the main reasons why power optimization is important.
Power optimization and artificial intelligence (AI) integration are essential to changing the way energy is produced, used, and distributed.
Real-time monitoring and analysis of power usage trends is made possible by AI-driven algorithms and predictive analytics.
arXiv Detail & Related papers (2024-06-22T04:42:37Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Towards Efficient Generative Large Language Model Serving: A Survey from
Algorithms to Systems [14.355768064425598]
generative large language models (LLMs) stand at the forefront, revolutionizing how we interact with our data.
However, the computational intensity and memory consumption of deploying these models present substantial challenges in terms of serving efficiency.
This survey addresses the imperative need for efficient LLM serving methodologies from a machine learning system (MLSys) research perspective.
arXiv Detail & Related papers (2023-12-23T11:57:53Z) - Model-Informed Generative Adversarial Network (MI-GAN) for Learning
Optimal Power Flow [5.407198609685119]
The optimal power flow (OPF) problem, as a critical component of power system operations, becomes increasingly difficult to solve due to the variability, intermittency, and unpredictability of renewable energy brought to the power system.
Deep learning techniques, such as neural networks, have recently been developed to improve computational efficiency in solving OPF problems with the utilization of data.
In this paper, we propose an optimization model-informed generative adversarial network (MI-GAN) framework to solve OPF under uncertainty.
arXiv Detail & Related papers (2022-06-04T00:37:37Z) - Coverage and Capacity Optimization in STAR-RISs Assisted Networks: A
Machine Learning Approach [102.00221938474344]
A novel model is proposed for the coverage and capacity optimization of simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) assisted networks.
A loss function-based update strategy is the core point, which is able to calculate weights for both loss functions of coverage and capacity by a min-norm solver at each update.
The numerical results demonstrate that the investigated update strategy outperforms the fixed weight-based MO algorithms.
arXiv Detail & Related papers (2022-04-13T13:52:22Z) - A survey on multi-objective hyperparameter optimization algorithms for
Machine Learning [62.997667081978825]
This article presents a systematic survey of the literature published between 2014 and 2020 on multi-objective HPO algorithms.
We distinguish between metaheuristic-based algorithms, metamodel-based algorithms, and approaches using a mixture of both.
We also discuss the quality metrics used to compare multi-objective HPO procedures and present future research directions.
arXiv Detail & Related papers (2021-11-23T10:22:30Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.