論文の概要: Artificial Intelligence enhanced Security Problems in Real-Time Scenario using Blowfish Algorithm
- arxiv url: http://arxiv.org/abs/2404.09286v1
- Date: Sun, 14 Apr 2024 15:38:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 14:38:22.312643
- Title: Artificial Intelligence enhanced Security Problems in Real-Time Scenario using Blowfish Algorithm
- Title(参考訳): Blowfishアルゴリズムを用いたリアルタイムシナリオにおける人工知能によるセキュリティ問題の改善
- Authors: Yuvaraju Chinnam, Bosubabu Sambana,
- Abstract要約: クラウド(クラウド)とは、インターネットのような大規模なリアルタイム通信ネットワークによって実現された相互接続型コンピューティングリソースの集合体である。
クラウドコンピューティングの指数的拡大により、クラウドサービスの急速な拡張が非常に目覚ましいものになった。
クラウドコンピューティングに関連するセキュリティモデルには、機密性、信頼性、アクセシビリティ、データの完全性、リカバリなどがある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In a nutshell, "the cloud" refers to a collection of interconnected computing resources made possible by an extensive, real-time communication network like the internet. Because of its potential to reduce processing costs, the emerging paradigm of cloud computing has recently attracted a large number of academics. The exponential expansion of cloud computing has made the rapid expansion of cloud services very remarkable. Ensuring the security of personal information in today's interconnected world is no easy task. These days, security is really crucial. Models of security that are relevant to cloud computing include confidentiality, authenticity, accessibility, data integrity, and recovery. Using the Hybrid Encryption this study, we cover all the security issues and leaks in cloud infrastructure.
- Abstract(参考訳): クラウド(クラウド)とは、インターネットのような大規模なリアルタイム通信ネットワークによって実現された、相互接続されたコンピューティングリソースの集合である。
処理コストを削減できる可能性から、クラウドコンピューティングの新たなパラダイムは、最近多くの学者を惹きつけている。
クラウドコンピューティングの指数的拡大により、クラウドサービスの急速な拡張が非常に目覚ましいものになった。
今日の相互接続された世界で個人情報のセキュリティを確保することは容易ではない。
最近は、セキュリティがとても重要だ。
クラウドコンピューティングに関連するセキュリティモデルには、機密性、信頼性、アクセシビリティ、データの完全性、リカバリなどがある。
この研究では、Hybrid Encryptionを使用して、クラウドインフラストラクチャのセキュリティ問題とリークをすべてカバーしています。
関連論文リスト
- Cloud Security and Security Challenges Revisited [0.0]
近年公開されたクラウドサービスとクラウド関連攻撃ベクトルに対する攻撃を再考する。
これらの結果に基づいて、セキュリティメトリクスを適用して、これらのクラウド関連のセキュリティ課題の深刻度をランク付けする。
論文 参考訳(メタデータ) (2024-05-18T17:42:02Z) - Leveraging AI Planning For Detecting Cloud Security Vulnerabilities [17.424669782627497]
クラウドコンピューティングサービスは、データストレージ、処理、コラボレーションのためのスケーラブルで費用対効果の高いソリューションを提供する。
アクセス制御のミスコンフィグレーションが、クラウドアタックの主要な要因であることが多い。
本研究では,セキュリティ脆弱性を検出するPDDLモデルを開発し,ランサムウェアなどの広範囲な攻撃につながる可能性がある。
論文 参考訳(メタデータ) (2024-02-16T03:28:02Z) - Computing in the Era of Large Generative Models: From Cloud-Native to
AI-Native [46.7766555589807]
クラウドネイティブ技術と高度な機械学習推論の両方のパワーを利用するAIネイティブコンピューティングパラダイムについて説明する。
これらの共同作業は、コスト・オブ・グッド・ソード(COGS)を最適化し、資源のアクセシビリティを向上させることを目的としている。
論文 参考訳(メタデータ) (2024-01-17T20:34:11Z) - Security and Privacy Issues in Cloud Storage [0.0]
クラウドコンピューティングは、独自の構造のため、独自の問題以外に、従来型のセキュリティとプライバシの脅威を継承する。
クラウドコンピューティングにまつわる脅威は、従業員からのインサイダーによる悪意ある攻撃であり、プロバイダが意識していないときさえある。
このレビューでは、コンシューマや企業でさえ意識していないギャップとして、最もセキュリティとプライバシの問題に光を当てています。
論文 参考訳(メタデータ) (2024-01-08T18:27:57Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
論文 参考訳(メタデータ) (2024-01-03T07:47:22Z) - Towards Confidential Computing: A Secure Cloud Architecture for Big Data
Analytics and AI [0.0]
クラウドコンピューティングは、ビッグデータ分析と人工知能のための実行可能なソリューションになっている。
バイオメディカルリサーチのような特定の分野におけるデータセキュリティは、クラウドに移行する際の大きな懸念事項である。
論文 参考訳(メタデータ) (2023-05-28T16:08:44Z) - Privacy-Preserving Cloud Computing: Ecosystem, Life Cycle, Layered
Architecture and Future Roadmap [0.0]
プライバシ保護型クラウドコンピューティングに関する調査論文は、関連する分野における今後の研究の道を開く上で有効である。
本稿では,階層型アーキテクチャとライフサイクル,プライバシ保護クラウドシステムのためのエコシステムを確立することで,既存のトレンドを識別する上で有効である。
論文 参考訳(メタデータ) (2022-04-23T18:47:26Z) - Unsupervised Point Cloud Representation Learning with Deep Neural
Networks: A Survey [104.71816962689296]
大規模クラウドラベリングの制約により,教師なしのポイントクラウド表現学習が注目されている。
本稿では、ディープニューラルネットワークを用いた教師なしポイントクラウド表現学習の総合的なレビューを提供する。
論文 参考訳(メタデータ) (2022-02-28T07:46:05Z) - Edge-Cloud Polarization and Collaboration: A Comprehensive Survey [61.05059817550049]
クラウドとエッジ両方のAIの体系的なレビューを行います。
私たちはクラウドとエッジモデリングの協調学習メカニズムを最初にセットアップしました。
我々は現在進行中の最先端AIトピックの可能性と実践経験について議論する。
論文 参考訳(メタデータ) (2021-11-11T05:58:23Z) - Auto-Split: A General Framework of Collaborative Edge-Cloud AI [49.750972428032355]
本稿では,Huawei Cloudのエッジクラウド共同プロトタイプであるAuto-Splitの技法と技術実践について述べる。
私たちの知る限りでは、Deep Neural Network(DNN)分割機能を提供する既存の産業製品はありません。
論文 参考訳(メタデータ) (2021-08-30T08:03:29Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
本稿では,ディープラーニング・アズ・ア・サービスのための分散アーキテクチャを提案する。
クラウドベースのマシンとディープラーニングサービスを提供しながら、ユーザの機密データを保存できる。
論文 参考訳(メタデータ) (2020-03-30T15:12:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。