論文の概要: Dynamic fault detection and diagnosis of industrial alkaline water electrolyzer process with variational Bayesian dictionary learning
- arxiv url: http://arxiv.org/abs/2404.09524v1
- Date: Mon, 15 Apr 2024 07:41:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 13:09:46.061777
- Title: Dynamic fault detection and diagnosis of industrial alkaline water electrolyzer process with variational Bayesian dictionary learning
- Title(参考訳): 変分ベイズ辞書学習による産業用アルカリ水電解器の動的故障検出と診断
- Authors: Qi Zhang, Lei Xie, Weihua Xu, Hongye Su,
- Abstract要約: アルカリ水電解法(英: Alkaline Water Electrolysis, AWE)は、再生可能エネルギーを用いた最も単純な水素製造法の一つである。
AWE操作の信頼性と安全性を向上させるため,新しい動的変分ベイズ辞書学習(RDVDL)モニタリング手法を提案する。
- 参考スコア(独自算出の注目度): 16.0547341561799
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Alkaline Water Electrolysis (AWE) is one of the simplest green hydrogen production method using renewable energy. AWE system typically yields process variables that are serially correlated and contaminated by measurement uncertainty. A novel robust dynamic variational Bayesian dictionary learning (RDVDL) monitoring approach is proposed to improve the reliability and safety of AWE operation. RDVDL employs a sparse Bayesian dictionary learning to preserve the dynamic mechanism information of AWE process which allows the easy interpretation of fault detection results. To improve the robustness to measurement uncertainty, a low-rank vector autoregressive (VAR) method is derived to reliably extract the serial correlation from process variables. The effectiveness of the proposed approach is demonstrated with an industrial hydrogen production process, and RDVDL can efficiently detect and diagnose critical AWE faults.
- Abstract(参考訳): アルカリ水電解法(英: Alkaline Water Electrolysis, AWE)は、再生可能エネルギーを用いた最も単純な水素製造法の一つである。
AWEシステムは通常、連続的に相関し、測定の不確実性によって汚染されるプロセス変数を生成する。
AWE操作の信頼性と安全性を向上させるため,新しいロバストな動的変動型ベイズ辞書学習(RDVDL)モニタリング手法を提案する。
RDVDLは、AWEプロセスの動的メカニズム情報を保存するために、スパースベイズ辞書学習を用いており、フォールト検出結果の容易に解釈できる。
測定の不確実性に対するロバスト性を改善するため,プロセス変数から連続相関を確実に抽出する低ランクベクトル自己回帰法(VAR)を導出した。
提案手法の有効性は工業用水素製造法で実証され, RDVDLは重要なAWE断層を効率的に検出し, 診断することができる。
関連論文リスト
- Targeted Cause Discovery with Data-Driven Learning [66.86881771339145]
本稿では,観測結果から対象変数の因果変数を推定する機械学習手法を提案する。
我々は、シミュレートされたデータの教師あり学習を通じて因果関係を特定するために訓練されたニューラルネットワークを用いる。
大規模遺伝子制御ネットワークにおける因果関係の同定における本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-08-29T02:21:11Z) - Supervised Learning based Method for Condition Monitoring of Overhead Line Insulators using Leakage Current Measurement [4.543428299377013]
本稿では,カップアンドピンガラス絶縁体列のフラッシュオーバー確率を推定するための機械学習(ML)に基づく新しい手法を提案する。
提案手法は,絶縁体ストリングの状態を正確に判定し,資産管理技術者に適切な行動を取るよう指示する。
論文 参考訳(メタデータ) (2024-07-26T18:11:49Z) - Multi-Granularity Semantic Revision for Large Language Model Distillation [66.03746866578274]
LLM蒸留における多粒性セマンティックリビジョン法を提案する。
シーケンスレベルでは、シーケンス修正と再生戦略を提案する。
トークンレベルでは、蒸留目的関数として、Kulback-Leibler損失を補正する分布適応クリッピングを設計する。
スパンレベルでは、シーケンスのスパン前処理を利用して、スパン内の確率相関を計算し、教師と学生の確率相関を一貫性に制約する。
論文 参考訳(メタデータ) (2024-07-14T03:51:49Z) - Learnable Linguistic Watermarks for Tracing Model Extraction Attacks on Large Language Models [20.44680783275184]
モデル抽出攻撃に対する現在の透かし技術は、モデルロジットの信号挿入や生成されたテキストの後処理に依存している。
大規模言語モデル(LLM)に学習可能な言語透かしを埋め込む新しい手法を提案する。
制御ノイズをトークン周波数分布に導入し,統計的に識別可能な透かしを埋め込むことにより,LLMの出力分布を微調整する。
論文 参考訳(メタデータ) (2024-04-28T14:45:53Z) - It's Never Too Late: Fusing Acoustic Information into Large Language
Models for Automatic Speech Recognition [70.77292069313154]
大規模言語モデル(LLM)は、自動音声認識(ASR)出力の上の生成誤り訂正(GER)に成功することができる。
本研究では,不確実性認識ダイナミックフュージョン (UADF) と呼ばれる新しい遅延融合解によって予測された転写を生成する前に,音響情報を注入することにより,そのような制限を克服することを目的とする。
論文 参考訳(メタデータ) (2024-02-08T07:21:45Z) - Deep Reinforcement Multi-agent Learning framework for Information
Gathering with Local Gaussian Processes for Water Monitoring [3.2266662249755025]
局所ガウス過程と深層強化学習を用いて効果的なモニタリングポリシを共同で取得することが提案されている。
このモデルの平均と分散の観察に基づく決定に基づく、深い畳み込み政策が提案されている。
エージェントはDouble Deep Q-Learningアルゴリズムを用いて、安全な方法で推定誤差を最小限に抑えるように訓練される。
論文 参考訳(メタデータ) (2024-01-09T15:58:15Z) - AI-Based Energy Transportation Safety: Pipeline Radial Threat Estimation
Using Intelligent Sensing System [52.93806509364342]
本稿では,分散光ファイバーセンシング技術に基づくエネルギーパイプラインの放射状脅威推定手法を提案する。
本稿では,包括的信号特徴抽出のための連続的マルチビュー・マルチドメイン機能融合手法を提案する。
本研究では,事前学習モデルによる伝達学習の概念を取り入れ,認識精度と学習効率の両立を図る。
論文 参考訳(メタデータ) (2023-12-18T12:37:35Z) - Continual Detection Transformer for Incremental Object Detection [154.8345288298059]
インクリメンタルオブジェクト検出(IOD)は、新しいオブジェクトカテゴリに対するアノテーションを備えた、フェーズ内のオブジェクト検出をトレーニングすることを目的としている。
他の段階的な設定として、IODは破滅的な忘れがちであり、知識蒸留(KD)や模範再生(ER)といった技術によってしばしば対処される。
本稿では,この文脈でKDとERを効果的に活用できるトランスフォーマーベースのIODを提案する。
論文 参考訳(メタデータ) (2023-04-06T14:38:40Z) - A Long-term Dependent and Trustworthy Approach to Reactor Accident
Prognosis based on Temporal Fusion Transformer [0.779964823075849]
本稿では,多面的自己意図とゲーティング機構を備えたTFTモデルに基づく事故診断手法を提案する。
HPR1000反応器における冷却剤事故(LOCA)の消失後の予後に本法を適用した。
論文 参考訳(メタデータ) (2022-10-28T13:08:48Z) - Self-Knowledge Distillation via Dropout [0.7883397954991659]
ドロップアウト(SD-Dropout)を用いた簡便かつ効果的な自己知識蒸留法を提案する。
我々の方法は、追加のトレーニング可能なモジュールを必要とせず、データに依存しず、単純な操作しか必要としない。
論文 参考訳(メタデータ) (2022-08-11T05:08:55Z) - Strictly Batch Imitation Learning by Energy-based Distribution Matching [104.33286163090179]
すなわち、強化信号へのアクセスがなく、遷移力学の知識がなく、環境とのさらなる相互作用もない。
1つの解決策は、既存のアルゴリズムをオフライン環境で動作させるために、見習いの学習に適合させることである。
しかし、このようなアプローチは、政治外の評価やオフラインモデルの推定に大きく依存しており、間接的で非効率である可能性がある。
優れたソリューションは、ポリシーを明示的にパラメータ化し、ロールアウトダイナミクスから暗黙的に学習し、完全にオフラインで運用できるべきだ、と私たちは主張する。
論文 参考訳(メタデータ) (2020-06-25T03:27:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。