Reactive Model Correction: Mitigating Harm to Task-Relevant Features via Conditional Bias Suppression
- URL: http://arxiv.org/abs/2404.09601v1
- Date: Mon, 15 Apr 2024 09:16:49 GMT
- Title: Reactive Model Correction: Mitigating Harm to Task-Relevant Features via Conditional Bias Suppression
- Authors: Dilyara Bareeva, Maximilian Dreyer, Frederik Pahde, Wojciech Samek, Sebastian Lapuschkin,
- Abstract summary: Deep Neural Networks are prone to learning and relying on spurious correlations in the training data, which, for high-risk applications, can have fatal consequences.
Various approaches to suppress model reliance on harmful features have been proposed that can be applied post-hoc without additional training.
We propose a reactive approach conditioned on model-derived knowledge and eXplainable Artificial Intelligence (XAI) insights.
- Score: 12.44857030152608
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Deep Neural Networks are prone to learning and relying on spurious correlations in the training data, which, for high-risk applications, can have fatal consequences. Various approaches to suppress model reliance on harmful features have been proposed that can be applied post-hoc without additional training. Whereas those methods can be applied with efficiency, they also tend to harm model performance by globally shifting the distribution of latent features. To mitigate unintended overcorrection of model behavior, we propose a reactive approach conditioned on model-derived knowledge and eXplainable Artificial Intelligence (XAI) insights. While the reactive approach can be applied to many post-hoc methods, we demonstrate the incorporation of reactivity in particular for P-ClArC (Projective Class Artifact Compensation), introducing a new method called R-ClArC (Reactive Class Artifact Compensation). Through rigorous experiments in controlled settings (FunnyBirds) and with a real-world dataset (ISIC2019), we show that introducing reactivity can minimize the detrimental effect of the applied correction while simultaneously ensuring low reliance on spurious features.
Related papers
- Automatic debiasing of neural networks via moment-constrained learning [0.0]
Naively learning the regression function and taking a sample mean of the target functional results in biased estimators.
We propose moment-constrained learning as a new RR learning approach that addresses some shortcomings in automatic debiasing.
arXiv Detail & Related papers (2024-09-29T20:56:54Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
Low-rank approximation techniques have become the de facto standard for fine-tuning Large Language Models.
This paper investigates the effectiveness of these methods in capturing the shift of fine-tuning datasets from the initial pre-trained data distribution.
We show that low-rank fine-tuning inadvertently preserves undesirable biases and toxic behaviors.
arXiv Detail & Related papers (2024-05-28T20:43:53Z) - Learning Off-policy with Model-based Intrinsic Motivation For Active Online Exploration [15.463313629574111]
This paper investigates how to achieve sample-efficient exploration in continuous control tasks.
We introduce an RL algorithm that incorporates a predictive model and off-policy learning elements.
We derive an intrinsic reward without incurring parameters overhead.
arXiv Detail & Related papers (2024-03-31T11:39:11Z) - Respect the model: Fine-grained and Robust Explanation with Sharing
Ratio Decomposition [29.491712784788188]
We propose a novel eXplainable AI (XAI) method called SRD (Sharing Ratio Decomposition), which sincerely reflects the model's inference process.
We also introduce an interesting observation termed Activation-Pattern-Only Prediction (APOP), letting us emphasize the importance of inactive neurons.
arXiv Detail & Related papers (2024-01-25T07:20:23Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Safe Deployment for Counterfactual Learning to Rank with Exposure-Based
Risk Minimization [63.93275508300137]
We introduce a novel risk-aware Counterfactual Learning To Rank method with theoretical guarantees for safe deployment.
Our experimental results demonstrate the efficacy of our proposed method, which is effective at avoiding initial periods of bad performance when little data is available.
arXiv Detail & Related papers (2023-04-26T15:54:23Z) - Feature Separation and Recalibration for Adversarial Robustness [18.975320671203132]
We propose a novel, easy-to- verify approach named Feature Separation and Recalibration.
It recalibrates the malicious, non-robust activations for more robust feature maps through Separation and Recalibration.
It improves the robustness of existing adversarial training methods by up to 8.57% with small computational overhead.
arXiv Detail & Related papers (2023-03-24T07:43:57Z) - Less is More: Mitigate Spurious Correlations for Open-Domain Dialogue
Response Generation Models by Causal Discovery [52.95935278819512]
We conduct the first study on spurious correlations for open-domain response generation models based on a corpus CGDIALOG curated in our work.
Inspired by causal discovery algorithms, we propose a novel model-agnostic method for training and inference of response generation model.
arXiv Detail & Related papers (2023-03-02T06:33:48Z) - A Fair Loss Function for Network Pruning [70.35230425589592]
We introduce the performance weighted loss function, a simple modified cross-entropy loss function that can be used to limit the introduction of biases during pruning.
Experiments using the CelebA, Fitzpatrick17k and CIFAR-10 datasets demonstrate that the proposed method is a simple and effective tool.
arXiv Detail & Related papers (2022-11-18T15:17:28Z) - WSLRec: Weakly Supervised Learning for Neural Sequential Recommendation
Models [24.455665093145818]
We propose a novel model-agnostic training approach called WSLRec, which adopts a three-stage framework: pre-training, top-$k$ mining, intrinsic and fine-tuning.
WSLRec resolves the incompleteness problem by pre-training models on extra weak supervisions from model-free methods like BR and ItemCF, while resolving the inaccuracy problem by leveraging the top-$k$ mining to screen out reliable user-item relevance from weak supervisions for fine-tuning.
arXiv Detail & Related papers (2022-02-28T08:55:12Z) - CC-Cert: A Probabilistic Approach to Certify General Robustness of
Neural Networks [58.29502185344086]
In safety-critical machine learning applications, it is crucial to defend models against adversarial attacks.
It is important to provide provable guarantees for deep learning models against semantically meaningful input transformations.
We propose a new universal probabilistic certification approach based on Chernoff-Cramer bounds.
arXiv Detail & Related papers (2021-09-22T12:46:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.