論文の概要: A Review and Efficient Implementation of Scene Graph Generation Metrics
- arxiv url: http://arxiv.org/abs/2404.09616v1
- Date: Mon, 15 Apr 2024 09:40:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 12:20:54.984976
- Title: A Review and Efficient Implementation of Scene Graph Generation Metrics
- Title(参考訳): シーングラフ生成メトリクスのレビューと効率的な実装
- Authors: Julian Lorenz, Robin Schön, Katja Ludwig, Rainer Lienhart,
- Abstract要約: シーングラフ生成においてよく使われるメトリクスのレビューと正確な定義を提供する。
これらのメトリクスの使用を容易にするため、SGBenchと呼ばれるスタンドアロンのPythonパッケージを導入します。
また,シーングラフ生成手法を研究者が比較可能な,シーングラフベンチマークWebサービスを提案する。
- 参考スコア(独自算出の注目度): 12.999518604217853
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scene graph generation has emerged as a prominent research field in computer vision, witnessing significant advancements in the recent years. However, despite these strides, precise and thorough definitions for the metrics used to evaluate scene graph generation models are lacking. In this paper, we address this gap in the literature by providing a review and precise definition of commonly used metrics in scene graph generation. Our comprehensive examination clarifies the underlying principles of these metrics and can serve as a reference or introduction to scene graph metrics. Furthermore, to facilitate the usage of these metrics, we introduce a standalone Python package called SGBench that efficiently implements all defined metrics, ensuring their accessibility to the research community. Additionally, we present a scene graph benchmarking web service, that enables researchers to compare scene graph generation methods and increase visibility of new methods in a central place. All of our code can be found at https://lorjul.github.io/sgbench/.
- Abstract(参考訳): シーングラフ生成はコンピュータビジョンにおける顕著な研究分野として現れており、近年の著しい進歩を目撃している。
しかし、これらの進歩にもかかわらず、シーングラフ生成モデルを評価するために使われるメトリクスの正確かつ徹底的な定義は欠落している。
本稿では、シーングラフ生成においてよく使われるメトリクスのレビューと正確な定義を提供することにより、文献におけるこのギャップに対処する。
総合的な検証により,これらの指標の根底にある原則が明確化され,シーングラフメトリクスの参照や導入として機能する。
さらに、これらのメトリクスの使用を容易にするために、SGBenchと呼ばれるスタンドアロンのPythonパッケージを導入し、すべての定義されたメトリクスを効率的に実装し、研究コミュニティへのアクセシビリティを確保する。
さらに,シーングラフ生成手法を研究者が比較し,中心となる場所で新たな手法の可視性を高めることのできるシーングラフベンチマークWebサービスを提案する。
すべてのコードはhttps://lorjul.github.io/sgbench/.com/で確認できます。
関連論文リスト
- Bures-Wasserstein Means of Graphs [60.42414991820453]
本研究では,スムーズなグラフ信号分布の空間への埋め込みを通じて,グラフ平均を定義する新しいフレームワークを提案する。
この埋め込み空間において平均を求めることにより、構造情報を保存する平均グラフを復元することができる。
我々は,新しいグラフの意味の存在と特異性を確立し,それを計算するための反復アルゴリズムを提供する。
論文 参考訳(メタデータ) (2023-05-31T11:04:53Z) - ConGraT: Self-Supervised Contrastive Pretraining for Joint Graph and Text Embeddings [20.25180279903009]
テキスト分散グラフ(TAG)におけるテキストとノードの分離表現を共同学習するためのContrastive Graph-Text Pretraining(ConGraT)を提案する。
提案手法は言語モデル(LM)とグラフニューラルネットワーク(GNN)を訓練し,CLIPにインスパイアされたバッチワイドコントラスト学習目標を用いて,それらの表現を共通の潜在空間に整列させる。
実験により、ConGraTは、ノードとテキストのカテゴリ分類、リンク予測、言語モデリングなど、さまざまな下流タスクのベースラインよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-05-23T17:53:30Z) - GEMS: Scene Expansion using Generative Models of Graphs [3.5998698847215165]
本稿では,その表現,シーングラフに着目し,新たなシーン拡張タスクを提案する。
まず、まず新しいノードを予測し、次にグラフ内の新しく予測されたノードと以前のノードの関係を予測します。
我々は、拡張されたシーングラフを評価するために、Visual GenomeとVRDデータセットに関する広範な実験を行う。
論文 参考訳(メタデータ) (2022-07-08T07:41:28Z) - Benchmarking Node Outlier Detection on Graphs [90.29966986023403]
グラフの外れ値検出は、多くのアプリケーションにおいて、新しいが重要な機械学習タスクである。
UNODと呼ばれるグラフに対して、最初の包括的教師なしノード外乱検出ベンチマークを示す。
論文 参考訳(メタデータ) (2022-06-21T01:46:38Z) - Cross-Domain Few-Shot Graph Classification [7.23389716633927]
本稿では,非等価な特徴空間を持つ領域間の数ショットグラフ分類の問題について検討する。
本稿では,3つの連続したグラフビュー,1つのコンテキストと2つのトポロジ的ビューを利用するアテンションベースグラフエンコーダを提案する。
提案するエンコーダは,メトリックベースのメタラーニングフレームワークと組み合わせることで,平均メタテストの分類精度が向上することを示す。
論文 参考訳(メタデータ) (2022-01-20T16:16:30Z) - Learning to Generate Scene Graph from Natural Language Supervision [52.18175340725455]
シーングラフと呼ばれる画像内の局所化オブジェクトとその関係をグラフィカルに表現するために,画像と文のペアから学習する最初の方法の1つを提案する。
既製のオブジェクト検出器を利用してオブジェクトのインスタンスを識別し、ローカライズし、検出された領域のラベルとキャプションから解析された概念をマッチングし、シーングラフを学習するための"擬似ラベル"を作成する。
論文 参考訳(メタデータ) (2021-09-06T03:38:52Z) - Image Scene Graph Generation (SGG) Benchmark [58.33119409657256]
画像シーングラフ生成(オブジェクト、関係検出)への関心が高まっている。
優れたベンチマークが欠如しているため、異なるシーングラフ生成モデルの報告結果と直接比較することができない。
我々は,マスマルクン・ベンチマークといくつかの人気モデルに基づく,待望のシーングラフ生成ベンチマークを開発した。
論文 参考訳(メタデータ) (2021-07-27T05:10:09Z) - Self-supervised Graph-level Representation Learning with Local and
Global Structure [71.45196938842608]
自己教師付き全グラフ表現学習のためのローカル・インスタンスとグローバル・セマンティック・ラーニング(GraphLoG)という統合フレームワークを提案する。
GraphLoGは、局所的な類似点の保存に加えて、グローバルなセマンティッククラスタをキャプチャする階層的なプロトタイプも導入している。
モデル学習のための効率的なオンライン予測最大化(EM)アルゴリズムがさらに開発された。
論文 参考訳(メタデータ) (2021-06-08T05:25:38Z) - Learning Graph Edit Distance by Graph Neural Networks [3.002973807612758]
本稿では,グラフ編集距離の従来の近似と深度学習の進歩を組み合わせた新しいフレームワークを提案する。
提案手法は,グラフ構造を捉えるためにメッセージパッシングニューラルネットワークを用いており,その情報を利用して距離計算を行う。
論文 参考訳(メタデータ) (2020-08-17T21:49:59Z) - Bridging Knowledge Graphs to Generate Scene Graphs [49.69377653925448]
本稿では,2つのグラフ間の情報伝達を反復的に行う新しいグラフベースニューラルネットワークを提案する。
我々のグラフブリッジネットワークであるGB-Netは、エッジとノードを連続的に推論し、相互接続されたシーンとコモンセンスグラフのリッチでヘテロジニアスな構造を同時に活用し、洗練する。
論文 参考訳(メタデータ) (2020-01-07T23:35:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。