論文の概要: Software development in the age of LLMs and XR
- arxiv url: http://arxiv.org/abs/2404.09789v1
- Date: Mon, 15 Apr 2024 13:45:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 22:07:08.333289
- Title: Software development in the age of LLMs and XR
- Title(参考訳): LLMとXR時代のソフトウェア開発
- Authors: Jesus M. Gonzalez-Barahona,
- Abstract要約: 数年で、生成的AIはソフトウェア開発を劇的に変え、ほとんどのプログラミングタスクを担った。
本稿では、開発プロセスがどのように影響を受けるのかを探求し、開発者を支援するためにどのツールが必要なのかを分析することによって、この状況がIDEにどのように影響するかを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Let's imagine that in a few years generative AI has changed software development dramatically, taking charge of most of the programming tasks. Let's also assume that extended reality devices became ubiquitous, being the preferred interface for interacting with computers. This paper proposes how this situation would impact IDEs, by exploring how the development process would be affected, and analyzing which tools would be needed for supporting developers.
- Abstract(参考訳): 数年のうちに、生成的AIがソフトウェア開発を劇的に変え、ほとんどのプログラミングタスクを担っていると想像してみましょう。
また、拡張現実のデバイスがユビキタスになり、コンピュータとの対話に好まれるインターフェースになったと仮定してみましょう。
本稿では、開発プロセスがどのように影響を受けるのかを探求し、開発者を支援するためにどのツールが必要なのかを分析することによって、この状況がIDEにどのように影響するかを提案する。
関連論文リスト
- tl;dr: Chill, y'all: AI Will Not Devour SE [5.77648992672856]
ソーシャルメディアは、人工知能(AI)がソフトウェアエンジニアリング(SE)を無関係または時代遅れにする、という厳しい警告の着実にダイエットを提供する。
逆に、ソフトウェアのエンジニアリングの規律は豊かで堅牢です。
マシンラーニング、大規模言語モデル(LLM)、生成AIは、SEのモデルとメソッドを拡張する新たな機会を提供する。
論文 参考訳(メタデータ) (2024-09-01T16:16:33Z) - OpenHands: An Open Platform for AI Software Developers as Generalist Agents [109.8507367518992]
私たちは、人間の開発者と同じような方法で世界と対話するAIエージェントを開発するためのプラットフォームであるOpenHandsを紹介します。
プラットフォームが新しいエージェントの実装を可能にし、コード実行のためのサンドボックス環境との安全なインタラクション、評価ベンチマークの導入について説明する。
論文 参考訳(メタデータ) (2024-07-23T17:50:43Z) - A New Generation of Intelligent Development Environments [0.0]
プログラミングの実践は、AI支援開発(コパイロット)の導入と、新しいプログラミング言語の作成によって、革命を遂げている。
本稿では,統合開発環境を統合開発環境からインテリジェント開発環境へ転換するビジョンを提案する。
論文 参考訳(メタデータ) (2024-06-13T20:33:25Z) - From Today's Code to Tomorrow's Symphony: The AI Transformation of Developer's Routine by 2030 [3.437372707846067]
我々は,2024年におけるAI支援プログラミングの現状と,2030年の予測とを比較分析する。
私たちは、2030人の開発者に包括的なサポートを提供するAIツールであるHyperAssistantを構想しています。
論文 参考訳(メタデータ) (2024-05-21T12:37:36Z) - Bridging Gaps, Building Futures: Advancing Software Developer Diversity and Inclusion Through Future-Oriented Research [50.545824691484796]
我々はSEの多様性と包摂性に関する課題と解決策について、SE研究者や実践者から知見を提示する。
我々は,将来的なユートピアやディストピアのビジョンを共有し,今後の研究の方向性とアカデミックや産業への示唆を提供する。
論文 参考訳(メタデータ) (2024-04-10T16:18:11Z) - Experiential Co-Learning of Software-Developing Agents [83.34027623428096]
大規模言語モデル(LLM)は、特にソフトウェア開発において、様々な領域に大きな変化をもたらした。
本稿では,新しいLLM学習フレームワークであるExperiential Co-Learningを紹介する。
実験では、このフレームワークにより、エージェントは、目に見えないソフトウェア開発タスクをより効果的に対処できることを示した。
論文 参考訳(メタデータ) (2023-12-28T13:50:42Z) - Intelligent Software Tooling for Improving Software Development [3.1763879286782966]
ディープラーニング(DL)は、ソフトウェア開発プロセスを含む多くの領域において、自動化の大幅な進歩を示しています。
この成功の主な理由は、GitHub経由で利用可能なオープンソースコードや、トレーニング対象とするRICOとReDRAWを備えたモバイルグラフィカルユーザインタフェース(GUI)の画像データセットなど、大規模なデータセットが利用可能であることだ。
論文 参考訳(メタデータ) (2023-10-17T01:29:07Z) - Embedded Software Development with Digital Twins: Specific Requirements
for Small and Medium-Sized Enterprises [55.57032418885258]
デジタル双生児は、コスト効率の良いソフトウェア開発とメンテナンス戦略の可能性を秘めている。
私たちは中小企業に現在の開発プロセスについてインタビューした。
最初の結果は、リアルタイムの要求が、これまでは、Software-in-the-Loop開発アプローチを妨げていることを示している。
論文 参考訳(メタデータ) (2023-09-17T08:56:36Z) - The GitHub Development Workflow Automation Ecosystems [47.818229204130596]
大規模なソフトウェア開発は、非常に協力的な取り組みになっています。
この章では、開発ボットとGitHub Actionsのエコシステムについて解説する。
この領域における最先端技術に関する広範な調査を提供する。
論文 参考訳(メタデータ) (2023-05-08T15:24:23Z) - Generative AI Assistants in Software Development Education: A vision for
integrating Generative AI into educational practice, not instinctively
defending against it [10.238740117460386]
ジェネレーティブAI(GAI)アシスタントは、人々の想像力(と恐怖)に火をつけた
業界がどのように適応するかは不明だが、大規模なソフトウェア企業によってこれらの技術を統合する動きは、意図と方向性を明確に示している。
論文 参考訳(メタデータ) (2023-03-24T11:45:52Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
ソフトウェア開発業界は、現代のソフトウェアシステムを高度にインテリジェントで自己学習システムに移行するために、機械学習を急速に採用している。
ソフトウェアエンジニアリングライフサイクルの段階にわたって機械学習の採用について、現状を探求する包括的な研究は存在しない。
本研究は,機械学習によるソフトウェア工学(MLSE)分類を,ソフトウェア工学ライフサイクルのさまざまな段階に適用性に応じて,最先端の機械学習技術に分類するものである。
論文 参考訳(メタデータ) (2020-05-27T11:56:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。