Software Engineering Methods For AI-Driven Deductive Legal Reasoning
- URL: http://arxiv.org/abs/2404.09868v2
- Date: Thu, 27 Jun 2024 21:03:15 GMT
- Title: Software Engineering Methods For AI-Driven Deductive Legal Reasoning
- Authors: Rohan Padhye,
- Abstract summary: We show how principled software engineering techniques can enhance AI-driven legal reasoning of complex statutes.
We show how it is possible to apply principled software engineering techniques to unlock new applications in automated meta-reasoning.
- Score: 2.95701410483693
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The recent proliferation of generative artificial intelligence (AI) technologies such as pre-trained large language models (LLMs) has opened up new frontiers in computational law. An exciting area of development is the use of AI to automate the deductive rule-based reasoning inherent in statutory and contract law. This paper argues that such automated deductive legal reasoning can now be viewed from the lens of software engineering, treating LLMs as interpreters of natural-language programs with natural-language inputs. We show how it is possible to apply principled software engineering techniques to enhance AI-driven legal reasoning of complex statutes and to unlock new applications in automated meta-reasoning such as mutation-guided example generation and metamorphic property-based testing.
Related papers
- Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
This paper critically examines the European Union's Artificial Intelligence Act (EU AI Act)
Uses insights from Alignment Theory (AT) research, which focuses on the potential pitfalls of technical alignment in Artificial Intelligence.
As we apply these concepts to the EU AI Act, we uncover potential vulnerabilities and areas for improvement in the regulation.
arXiv Detail & Related papers (2024-10-10T17:38:38Z) - How Could Generative AI Support Compliance with the EU AI Act? A Review for Safe Automated Driving Perception [4.075971633195745]
Deep Neural Networks (DNNs) have become central for the perception functions of autonomous vehicles.
The European Union (EU) Artificial Intelligence (AI) Act aims to address these challenges by establishing stringent norms and standards for AI systems.
This review paper summarizes the requirements arising from the EU AI Act regarding DNN-based perception systems and systematically categorizes existing generative AI applications in AD.
arXiv Detail & Related papers (2024-08-30T12:01:06Z) - A Path Towards Legal Autonomy: An interoperable and explainable approach to extracting, transforming, loading and computing legal information using large language models, expert systems and Bayesian networks [2.2192488799070444]
Legal autonomy can be achieved either by imposing constraints on AI actors such as developers, deployers and users, or by imposing constraints on the range and scope of the impact that AI agents can have on the environment.
The latter approach involves encoding extant rules concerning AI driven devices into the software of AI agents controlling those devices.
This is a challenge since the effectivity of such an approach requires a method of extracting, loading, transforming and computing legal information that would be both explainable and legally interoperable.
arXiv Detail & Related papers (2024-03-27T13:12:57Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - ProAgent: From Robotic Process Automation to Agentic Process Automation [87.0555252338361]
Large Language Models (LLMs) have emerged human-like intelligence.
This paper introduces Agentic Process Automation (APA), a groundbreaking automation paradigm using LLM-based agents for advanced automation.
We then instantiate ProAgent, an agent designed to craft from human instructions and make intricate decisions by coordinating specialized agents.
arXiv Detail & Related papers (2023-11-02T14:32:16Z) - Bringing order into the realm of Transformer-based language models for
artificial intelligence and law [3.2074558838636262]
Transformer-based language models (TLMs) have widely been recognized to be a cutting-edge technology.
This article provides the first systematic overview of TLM-based methods for AI-driven problems and tasks in the legal sphere.
arXiv Detail & Related papers (2023-08-10T11:14:22Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - A Critical Review of Inductive Logic Programming Techniques for
Explainable AI [9.028858411921906]
Inductive Logic Programming (ILP) is a subfield of symbolic artificial intelligence.
ILP generates explainable first-order clausal theories from examples and background knowledge.
Existing ILP systems often have a vast solution space, and the induced solutions are very sensitive to noises and disturbances.
arXiv Detail & Related papers (2021-12-31T06:34:32Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
We release the Longformer-based pre-trained language model, named as Lawformer, for Chinese legal long documents understanding.
We evaluate Lawformer on a variety of LegalAI tasks, including judgment prediction, similar case retrieval, legal reading comprehension, and legal question answering.
arXiv Detail & Related papers (2021-05-09T09:39:25Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - AI and Legal Argumentation: Aligning the Autonomous Levels of AI Legal
Reasoning [0.0]
Legal argumentation is a vital cornerstone of justice, underpinning an adversarial form of law.
Extensive research has attempted to augment or undertake legal argumentation via the use of computer-based automation including Artificial Intelligence (AI)
An innovative meta-approach is proposed to apply the Levels of Autonomy (LoA) of AI Legal Reasoning to the maturation of AI and Legal Argumentation (AILA)
arXiv Detail & Related papers (2020-09-11T22:05:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.