AutoIOT: LLM-Driven Automated Natural Language Programming for AIoT Applications
- URL: http://arxiv.org/abs/2503.05346v1
- Date: Fri, 07 Mar 2025 11:40:52 GMT
- Title: AutoIOT: LLM-Driven Automated Natural Language Programming for AIoT Applications
- Authors: Leming Shen, Qiang Yang, Yuanqing Zheng, Mo Li,
- Abstract summary: Large Language Models (LLMs) have profoundly transformed our lives, revolutionizing interactions with AI and lowering the barrier to AI usage.<n>This paper introduces AutoIOT, an automated program generator for AIoT applications.
- Score: 16.47929288038498
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The advent of Large Language Models (LLMs) has profoundly transformed our lives, revolutionizing interactions with AI and lowering the barrier to AI usage. While LLMs are primarily designed for natural language interaction, the extensive embedded knowledge empowers them to comprehend digital sensor data. This capability enables LLMs to engage with the physical world through IoT sensors and actuators, performing a myriad of AIoT tasks. Consequently, this evolution triggers a paradigm shift in conventional AIoT application development, democratizing its accessibility to all by facilitating the design and development of AIoT applications via natural language. However, some limitations need to be addressed to unlock the full potential of LLMs in AIoT application development. First, existing solutions often require transferring raw sensor data to LLM servers, which raises privacy concerns, incurs high query fees, and is limited by token size. Moreover, the reasoning processes of LLMs are opaque to users, making it difficult to verify the robustness and correctness of inference results. This paper introduces AutoIOT, an LLM-based automated program generator for AIoT applications. AutoIOT enables users to specify their requirements using natural language (input) and automatically synthesizes interpretable programs with documentation (output). AutoIOT automates the iterative optimization to enhance the quality of generated code with minimum user involvement. AutoIOT not only makes the execution of AIoT tasks more explainable but also mitigates privacy concerns and reduces token costs with local execution of synthesized programs. Extensive experiments and user studies demonstrate AutoIOT's remarkable capability in program synthesis for various AIoT tasks. The synthesized programs can match and even outperform some representative baselines.
Related papers
- Skill Discovery for Software Scripting Automation via Offline Simulations with LLMs [63.10710876536337]
We propose an offline simulation framework to curate a software-specific skillset, a collection of verified scripts.
Our framework comprises two components: (1) task creation, using top-down functionality and bottom-up API synergy exploration to generate helpful tasks.
Experiments with Adobe Illustrator demonstrate that our framework significantly improves automation success rates, reduces response time, and saves runtime token costs.
arXiv Detail & Related papers (2025-04-29T04:03:37Z) - GPIoT: Tailoring Small Language Models for IoT Program Synthesis and Development [15.109121724888382]
GPIoT is a code generation system for IoT applications by fine-tuning locally deployable Small Language Models (SLMs)
We propose GPIoT, a code generation system for IoT applications by fine-tuning locally deployable Small Language Models (SLMs) on IoT-specialized datasets.
arXiv Detail & Related papers (2025-03-02T01:55:40Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - DeeR-VLA: Dynamic Inference of Multimodal Large Language Models for Efficient Robot Execution [114.61347672265076]
Development of MLLMs for real-world robots is challenging due to the typically limited computation and memory capacities available on robotic platforms.
We propose a Dynamic Early-Exit Framework for Robotic Vision-Language-Action Model (DeeR) that automatically adjusts the size of the activated MLLM.
DeeR demonstrates significant reductions in computational costs of LLM by 5.2-6.5x and GPU memory of LLM by 2-6x without compromising performance.
arXiv Detail & Related papers (2024-11-04T18:26:08Z) - AIvril: AI-Driven RTL Generation With Verification In-The-Loop [0.7831852829409273]
Large Language Models (LLMs) are computational models capable of performing complex natural language processing tasks.
This paper introduces AIvril, a framework designed to enhance the accuracy and reliability of RTL-aware LLMs.
arXiv Detail & Related papers (2024-09-03T15:07:11Z) - Large Language Model as a Catalyst: A Paradigm Shift in Base Station Siting Optimization [62.16747639440893]
Large language models (LLMs) and their associated technologies advance, particularly in the realms of prompt engineering and agent engineering.<n>Our proposed framework incorporates retrieval-augmented generation (RAG) to enhance the system's ability to acquire domain-specific knowledge and generate solutions.
arXiv Detail & Related papers (2024-08-07T08:43:32Z) - Meaning-Typed Programming: Language-level Abstractions and Runtime for GenAI Applications [8.308424118055981]
Software is rapidly evolving from logical code to neuro-integrated applications that leverage generative AI and large language models (LLMs) for application functionality.<n>This paper proposes meaning-typed programming (MTP), a novel approach to simplify the creation of neuro-integrated applications.
arXiv Detail & Related papers (2024-05-14T21:12:01Z) - LLMind: Orchestrating AI and IoT with LLM for Complex Task Execution [18.816077341295628]
We present LLMind, a task-oriented AI framework that enables effective collaboration among IoT devices.
Inspired by the functional specialization theory of the brain, our framework integrates an LLM with domain-specific AI modules.
Complex tasks, which may involve collaborations of multiple domain-specific AI modules and IoT devices, are executed through a control script.
arXiv Detail & Related papers (2023-12-14T14:57:58Z) - GPT4AIGChip: Towards Next-Generation AI Accelerator Design Automation via Large Language Models [20.844806635710526]
GPT4AIGChip is a framework intended to democratize AI accelerator design by leveraging human natural languages.<n>This work is the first to demonstrate an effective pipeline for LLM-powered automated AI accelerator generation.
arXiv Detail & Related papers (2023-09-19T16:14:57Z) - Language to Rewards for Robotic Skill Synthesis [37.21434094015743]
We introduce a new paradigm that harnesses large language models (LLMs) to define reward parameters that can be optimized and accomplish variety of robotic tasks.
Using reward as the intermediate interface generated by LLMs, we can effectively bridge the gap between high-level language instructions or corrections to low-level robot actions.
arXiv Detail & Related papers (2023-06-14T17:27:10Z) - AutoML-GPT: Automatic Machine Learning with GPT [74.30699827690596]
We propose developing task-oriented prompts and automatically utilizing large language models (LLMs) to automate the training pipeline.
We present the AutoML-GPT, which employs GPT as the bridge to diverse AI models and dynamically trains models with optimized hyper parameters.
This approach achieves remarkable results in computer vision, natural language processing, and other challenging areas.
arXiv Detail & Related papers (2023-05-04T02:09:43Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
We introduce OmniForce, a human-centered AutoML system that yields both human-assisted ML and ML-assisted human techniques.
We show how OmniForce can put an AutoML system into practice and build adaptive AI in open-environment scenarios.
arXiv Detail & Related papers (2023-03-01T13:35:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.