LSTM for Model-Based Anomaly Detection in Cyber-Physical Systems
- URL: http://arxiv.org/abs/2010.15680v1
- Date: Thu, 29 Oct 2020 15:26:08 GMT
- Title: LSTM for Model-Based Anomaly Detection in Cyber-Physical Systems
- Authors: Benedikt Eiteneuer and Oliver Niggemann
- Abstract summary: Anomaly detection is the task of detecting data which differs from the normal behaviour of a system in a given context.
Long Short-Term Memory (LSTM) neural networks have been shown to be particularly useful to learn time sequences.
We analyse the approach on artificial and real data.
- Score: 4.020523898765404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection is the task of detecting data which differs from the normal
behaviour of a system in a given context. In order to approach this problem,
data-driven models can be learned to predict current or future observations.
Oftentimes, anomalous behaviour depends on the internal dynamics of the system
and looks normal in a static context. To address this problem, the model should
also operate depending on state. Long Short-Term Memory (LSTM) neural networks
have been shown to be particularly useful to learn time sequences with varying
length of temporal dependencies and are therefore an interesting general
purpose approach to learn the behaviour of arbitrarily complex Cyber-Physical
Systems. In order to perform anomaly detection, we slightly modify the standard
norm 2 error to incorporate an estimate of model uncertainty. We analyse the
approach on artificial and real data.
Related papers
- Pattern-Based Time-Series Risk Scoring for Anomaly Detection and Alert Filtering -- A Predictive Maintenance Case Study [3.508168174653255]
We propose a fast and efficient approach to anomaly detection and alert filtering based on sequential pattern similarities.
We show how this approach can be leveraged for a variety of purposes involving anomaly detection on a large scale real-world industrial system.
arXiv Detail & Related papers (2024-05-24T20:27:45Z) - Explainable Online Unsupervised Anomaly Detection for Cyber-Physical Systems via Causal Discovery from Time Series [1.223779595809275]
State-of-the-art approaches based on deep learning via neural networks achieve outstanding performance at anomaly recognition.
We show that our method has higher training efficiency, outperforms the accuracy of state-of-the-art neural architectures.
arXiv Detail & Related papers (2024-04-15T15:42:12Z) - Representing Timed Automata and Timing Anomalies of Cyber-Physical
Production Systems in Knowledge Graphs [51.98400002538092]
This paper aims to improve model-based anomaly detection in CPPS by combining the learned timed automaton with a formal knowledge graph about the system.
Both the model and the detected anomalies are described in the knowledge graph in order to allow operators an easier interpretation of the model and the detected anomalies.
arXiv Detail & Related papers (2023-08-25T15:25:57Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Time series anomaly detection with reconstruction-based state-space
models [10.085100442558828]
We propose a novel unsupervised anomaly detection method for time series data.
A long short-term memory (LSTM)-based encoder-decoder is adopted to represent the mapping between the observation space and the latent space.
Regularization of the latent space places constraints on the states of normal samples, and Mahalanobis distance is used to evaluate the abnormality level.
arXiv Detail & Related papers (2023-03-06T17:52:35Z) - A critical look at deep neural network for dynamic system modeling [0.0]
This paper questions the capability of (deep) neural networks for the modeling of dynamic systems using input-output data.
For the identification of linear time-invariant (LTI) dynamic systems, two representative neural network models are compared.
For the LTI system, both LSTM and CFNN fail to deliver consistent models even in noise-free cases.
arXiv Detail & Related papers (2023-01-27T09:03:05Z) - Stacked Residuals of Dynamic Layers for Time Series Anomaly Detection [0.0]
We present an end-to-end differentiable neural network architecture to perform anomaly detection in multivariate time series.
The architecture is a cascade of dynamical systems designed to separate linearly predictable components of the signal.
The anomaly detector exploits the temporal structure of the prediction residuals to detect both isolated point anomalies and set-point changes.
arXiv Detail & Related papers (2022-02-25T01:50:22Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z) - Neural ODE Processes [64.10282200111983]
We introduce Neural ODE Processes (NDPs), a new class of processes determined by a distribution over Neural ODEs.
We show that our model can successfully capture the dynamics of low-dimensional systems from just a few data-points.
arXiv Detail & Related papers (2021-03-23T09:32:06Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.