Calculation of DC Stark Resonances for the Ammonia Molecule
- URL: http://arxiv.org/abs/2404.10000v1
- Date: Thu, 28 Mar 2024 10:58:47 GMT
- Title: Calculation of DC Stark Resonances for the Ammonia Molecule
- Authors: Patrik Pirkola, Marko Horbatsch,
- Abstract summary: We extend previous work on the planar-geometry water molecule for which non-monotonic shifts were observed.
We find such non-monotonic shifts for fields along the molecular axis.
For perpendicular fields we report the splitting of the 1e orbitals into a fast- and a slow-ionizing orbital.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A model potential previously developed for the ammonia molecule is treated in a single-center partial-wave approximation in analogy with a self-consistent field method developed by Moccia. The latter was used in a number of collision studies. The model potential is used to calculate dc Stark resonance parameters, i.e., resonance positions and shifts within a single-center partial wave expansion, using the exterior complex scaling method for the radial coordinate. Three molecular valence orbitals are investigated for fields along the three Cartesian coordinates, i.e., along the molecular axis and in two perpendicular directions. The work extends previous work on the planar-geometry water molecule for which non-monotonic shifts were observed. We find such non-monotonic shifts for fields along the molecular axis. For perpendicular fields we report the splitting of the 1e orbitals into a fast- and a slow-ionizing orbital.
Related papers
- Observation of Rydberg blockade due to the charge-dipole interaction
between an atom and a polar molecule [52.77024349608834]
We demonstrate Rydberg blockade due to the charge-dipole interaction between a single Rb atom and a single RbCs molecule confined in optical tweezers.
Results open up the prospect of a hybrid platform where quantum information is transferred between individually trapped molecules using Rydberg atoms.
arXiv Detail & Related papers (2023-03-10T18:41:20Z) - Low-energy electron-induced ion-pair dissociation to
"Trilobite-resembling" long-range heavy Rydberg system [0.0]
We have studied electron-induced ion-pair dissociation dynamics of CO using the state-of-art velocity map imaging technique.
We have directly detected the existence of S-wave resonated Trilobite resembling a novel molecular binding energy mechanism.
arXiv Detail & Related papers (2022-08-30T08:07:59Z) - Non-monotonic dc Stark shifts in the rapidly ionizing orbitals of the
water molecule [0.0]
We use the exterior complex scaling approach to find resonance positions and decay rates.
We focus on the three outermost (valence) orbitals, as they are dominating the ionization process.
For the case of fields along the molecular axis we also compare results as a function of the number of spherical harmonics included.
arXiv Detail & Related papers (2022-03-19T22:34:23Z) - Realization of Heisenberg models of spin systems with polar molecules in
pendular states [0.5837061763460747]
We show that ultracold polar diatomic or linear molecules can be used to realize the exact Heisenberg XYZ, XXZ and XY models without invoking any approximation.
The two lowest lying excited pendular states coupled by microwave or radio-frequency fields are used to encode the pseudo-spin.
We calculate the phase diagram for a linear chain of polar molecules based on the Heisenberg models and discuss their drawbacks, advantages, and potential applications.
arXiv Detail & Related papers (2021-12-30T09:31:47Z) - Partial-wave approach to the Stark resonance problem of the water
molecule [0.0]
A partial-wave method is developed to deal with small molecules dominated by a central atom.
A potential for the water molecule is expanded over a basis of spherical harmonics.
arXiv Detail & Related papers (2021-12-14T19:50:34Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Phase diagram of a distorted kagome antiferromagnet and application to
Y-kapellasite [50.591267188664666]
We reveal a rich ground state phase diagram even at the classical level.
The presented model opens a new direction in the study of kagome antiferromagnets.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - Discontinuous Galerkin method with Voronoi partitioning for Quantum
Simulation of Chemistry [1.5301252700705212]
We extend the discontinuous Galerkin procedure to be applicable to molecular and crystalline systems of arbitrary geometry.
We investigate the performance, at the mean-field and correlated levels, with quasi-1D, 2D and 3D partitions using hydrogen chains, H$_4$, CH$_4$ as examples.
arXiv Detail & Related papers (2020-10-31T21:45:53Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.