Low-Light Image Enhancement Framework for Improved Object Detection in Fisheye Lens Datasets
- URL: http://arxiv.org/abs/2404.10078v1
- Date: Mon, 15 Apr 2024 18:32:52 GMT
- Title: Low-Light Image Enhancement Framework for Improved Object Detection in Fisheye Lens Datasets
- Authors: Dai Quoc Tran, Armstrong Aboah, Yuntae Jeon, Maged Shoman, Minsoo Park, Seunghee Park,
- Abstract summary: This study addresses the evolving challenges in urban traffic monitoring systems based on fisheye lens cameras.
Fisheye lenses provide wide and omnidirectional coverage in a single frame, making them a transformative solution.
Motivated by these challenges, this study proposes a novel approach that combines a ransformer-based image enhancement framework and ensemble learning technique.
- Score: 4.170227455727819
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study addresses the evolving challenges in urban traffic monitoring detection systems based on fisheye lens cameras by proposing a framework that improves the efficacy and accuracy of these systems. In the context of urban infrastructure and transportation management, advanced traffic monitoring systems have become critical for managing the complexities of urbanization and increasing vehicle density. Traditional monitoring methods, which rely on static cameras with narrow fields of view, are ineffective in dynamic urban environments, necessitating the installation of multiple cameras, which raises costs. Fisheye lenses, which were recently introduced, provide wide and omnidirectional coverage in a single frame, making them a transformative solution. However, issues such as distorted views and blurriness arise, preventing accurate object detection on these images. Motivated by these challenges, this study proposes a novel approach that combines a ransformer-based image enhancement framework and ensemble learning technique to address these challenges and improve traffic monitoring accuracy, making significant contributions to the future of intelligent traffic management systems. Our proposed methodological framework won 5th place in the 2024 AI City Challenge, Track 4, with an F1 score of 0.5965 on experimental validation data. The experimental results demonstrate the effectiveness, efficiency, and robustness of the proposed system. Our code is publicly available at https://github.com/daitranskku/AIC2024-TRACK4-TEAM15.
Related papers
- Technique Report of CVPR 2024 PBDL Challenges [211.79824163599872]
Physics-based vision aims to invert the processes to recover scene properties such as shape, reflectance, light distribution, and medium properties from images.
Deep learning has shown promising improvements for various vision tasks, and when combined with physics-based vision, these approaches can enhance the robustness and accuracy of vision systems.
This technical report summarizes the outcomes of the Physics-Based Vision Meets Deep Learning (PBDL) 2024 challenge, held in CVPR 2024 workshop.
arXiv Detail & Related papers (2024-06-15T21:44:17Z) - The RoboDrive Challenge: Drive Anytime Anywhere in Any Condition [136.32656319458158]
The 2024 RoboDrive Challenge was crafted to propel the development of driving perception technologies.
This year's challenge consisted of five distinct tracks and attracted 140 registered teams from 93 institutes across 11 countries.
The competition culminated in 15 top-performing solutions.
arXiv Detail & Related papers (2024-05-14T17:59:57Z) - Real-Time Detection and Analysis of Vehicles and Pedestrians using Deep Learning [0.0]
Current traffic monitoring systems confront major difficulty in recognizing small objects and pedestrians effectively in real-time.
Our project focuses on the creation and validation of an advanced deep-learning framework capable of processing complex visual input for precise, real-time recognition of cars and people.
The YOLOv8 Large version proved to be the most effective, especially in pedestrian recognition, with great precision and robustness.
arXiv Detail & Related papers (2024-04-11T18:42:14Z) - VICAN: Very Efficient Calibration Algorithm for Large Camera Networks [49.17165360280794]
We introduce a novel methodology that extends Pose Graph Optimization techniques.
We consider the bipartite graph encompassing cameras, object poses evolving dynamically, and camera-object relative transformations at each time step.
Our framework retains compatibility with traditional PGO solvers, but its efficacy benefits from a custom-tailored optimization scheme.
arXiv Detail & Related papers (2024-03-25T17:47:03Z) - Detection of Micromobility Vehicles in Urban Traffic Videos [7.5867752610196915]
This work introduces an adapted detection model that combines the accuracy and speed of single-frame object detection with the richer features offered by object detection frameworks.
This fusion brings a temporal perspective to YOLOX detection abilities, allowing for a better understanding of urban mobility patterns.
Tested on a curated dataset for urban micromobility scenarios, our model showcases substantial improvement over existing state-of-the-art methods.
arXiv Detail & Related papers (2024-02-28T17:31:39Z) - CityTrack: Improving City-Scale Multi-Camera Multi-Target Tracking by
Location-Aware Tracking and Box-Grained Matching [15.854610268846562]
Multi-Camera Multi-Target Tracking (MCMT) is a computer vision technique that involves tracking multiple targets simultaneously across multiple cameras.
We propose a systematic MCMT framework, called CityTrack, to overcome the challenges posed by urban traffic scenes.
We present a Location-Aware SCMT tracker which integrates various advanced techniques to improve its effectiveness in the MCMT task.
arXiv Detail & Related papers (2023-07-06T03:25:37Z) - Self-supervised Interest Point Detection and Description for Fisheye and
Perspective Images [7.451395029642832]
Keypoint detection and matching is a fundamental task in many computer vision problems.
In this work, we focus on the case when this is caused by the geometry of the cameras used for image acquisition.
We build on a state-of-the-art approach and derive a self-supervised procedure that enables training an interest point detector and descriptor network.
arXiv Detail & Related papers (2023-06-02T22:39:33Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - Scalable and Real-time Multi-Camera Vehicle Detection,
Re-Identification, and Tracking [58.95210121654722]
We propose a real-time city-scale multi-camera vehicle tracking system that handles real-world, low-resolution CCTV instead of idealized and curated video streams.
Our method is ranked among the top five performers on the public leaderboard.
arXiv Detail & Related papers (2022-04-15T12:47:01Z) - Unsupervised Vehicle Counting via Multiple Camera Domain Adaptation [9.730985797769764]
Monitoring vehicle flows in cities is crucial to improve the urban environment and quality of life of citizens.
Current technologies for vehicle counting in images hinge on large quantities of annotated data, preventing their scalability to city-scale as new cameras are added to the system.
We propose and discuss a new methodology to design image-based vehicle density estimators with few labeled data via multiple camera domain adaptations.
arXiv Detail & Related papers (2020-04-20T13:00:46Z) - Training-free Monocular 3D Event Detection System for Traffic
Surveillance [93.65240041833319]
Existing event detection systems are mostly learning-based and have achieved convincing performance when a large amount of training data is available.
In real-world scenarios, collecting sufficient labeled training data is expensive and sometimes impossible.
We propose a training-free monocular 3D event detection system for traffic surveillance.
arXiv Detail & Related papers (2020-02-01T04:42:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.