Real-Time Detection and Analysis of Vehicles and Pedestrians using Deep Learning
- URL: http://arxiv.org/abs/2404.08081v1
- Date: Thu, 11 Apr 2024 18:42:14 GMT
- Title: Real-Time Detection and Analysis of Vehicles and Pedestrians using Deep Learning
- Authors: Md Nahid Sadik, Tahmim Hossain, Faisal Sayeed,
- Abstract summary: Current traffic monitoring systems confront major difficulty in recognizing small objects and pedestrians effectively in real-time.
Our project focuses on the creation and validation of an advanced deep-learning framework capable of processing complex visual input for precise, real-time recognition of cars and people.
The YOLOv8 Large version proved to be the most effective, especially in pedestrian recognition, with great precision and robustness.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Computer vision, particularly vehicle and pedestrian identification is critical to the evolution of autonomous driving, artificial intelligence, and video surveillance. Current traffic monitoring systems confront major difficulty in recognizing small objects and pedestrians effectively in real-time, posing a serious risk to public safety and contributing to traffic inefficiency. Recognizing these difficulties, our project focuses on the creation and validation of an advanced deep-learning framework capable of processing complex visual input for precise, real-time recognition of cars and people in a variety of environmental situations. On a dataset representing complicated urban settings, we trained and evaluated different versions of the YOLOv8 and RT-DETR models. The YOLOv8 Large version proved to be the most effective, especially in pedestrian recognition, with great precision and robustness. The results, which include Mean Average Precision and recall rates, demonstrate the model's ability to dramatically improve traffic monitoring and safety. This study makes an important addition to real-time, reliable detection in computer vision, establishing new benchmarks for traffic management systems.
Related papers
- Traffic control using intelligent timing of traffic lights with reinforcement learning technique and real-time processing of surveillance camera images [0.0]
The optimal timing of traffic lights is determined and applied according to several parameters.
Deep learning methods were used in vehicle detection using the YOLOv9-C model.
The use of transfer learning along with retraining the model on images of Iranian cars has increased the accuracy of the model.
arXiv Detail & Related papers (2024-05-22T00:04:32Z) - Optimized Detection and Classification on GTRSB: Advancing Traffic Sign
Recognition with Convolutional Neural Networks [0.0]
This paper presents an innovative approach leveraging CNNs that achieves an accuracy of nearly 96%.
It highlights the potential for even greater precision through advanced localization techniques.
arXiv Detail & Related papers (2024-03-13T06:28:37Z) - Real-time Traffic Object Detection for Autonomous Driving [5.780326596446099]
Modern computer vision techniques tend to prioritize accuracy over efficiency.
Existing object detectors are far from being real-time.
We propose a more suitable alternative that incorporates real-time requirements.
arXiv Detail & Related papers (2024-01-31T19:12:56Z) - Improving automatic detection of driver fatigue and distraction using
machine learning [0.0]
Driver fatigue and distracted driving are important factors in traffic accidents.
We present techniques for simultaneously detecting fatigue and distracted driving behaviors using vision-based and machine learning-based approaches.
arXiv Detail & Related papers (2024-01-04T06:33:46Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - Scalable Vehicle Re-Identification via Self-Supervision [66.2562538902156]
Vehicle Re-Identification is one of the key elements in city-scale vehicle analytics systems.
Many state-of-the-art solutions for vehicle re-id mostly focus on improving the accuracy on existing re-id benchmarks and often ignore computational complexity.
We propose a simple yet effective hybrid solution empowered by self-supervised training which only uses a single network during inference time.
arXiv Detail & Related papers (2022-05-16T12:14:42Z) - Scalable and Real-time Multi-Camera Vehicle Detection,
Re-Identification, and Tracking [58.95210121654722]
We propose a real-time city-scale multi-camera vehicle tracking system that handles real-world, low-resolution CCTV instead of idealized and curated video streams.
Our method is ranked among the top five performers on the public leaderboard.
arXiv Detail & Related papers (2022-04-15T12:47:01Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
We propose an effective training data generation process by fitting a 3D car model with dynamic parts to vehicles in real images.
Our approach is fully automatic without any human interaction.
We present a multi-task network for VUS parsing and a multi-stream network for VHI parsing.
arXiv Detail & Related papers (2020-12-15T03:03:38Z) - VATLD: A Visual Analytics System to Assess, Understand and Improve
Traffic Light Detection [15.36267013724161]
We propose a visual analytics system, VATLD, to assess, understand, and improve the accuracy and robustness of traffic light detectors in autonomous driving applications.
The disentangled representation learning extracts data semantics to augment human cognition with human-friendly visual summarization.
We also demonstrate the effectiveness of various performance improvement strategies with our visual analytics system, VATLD, and illustrate some practical implications for safety-critical applications in autonomous driving.
arXiv Detail & Related papers (2020-09-27T22:39:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.