The RoboDrive Challenge: Drive Anytime Anywhere in Any Condition
- URL: http://arxiv.org/abs/2405.08816v2
- Date: Thu, 30 May 2024 03:49:20 GMT
- Title: The RoboDrive Challenge: Drive Anytime Anywhere in Any Condition
- Authors: Lingdong Kong, Shaoyuan Xie, Hanjiang Hu, Yaru Niu, Wei Tsang Ooi, Benoit R. Cottereau, Lai Xing Ng, Yuexin Ma, Wenwei Zhang, Liang Pan, Kai Chen, Ziwei Liu, Weichao Qiu, Wei Zhang, Xu Cao, Hao Lu, Ying-Cong Chen, Caixin Kang, Xinning Zhou, Chengyang Ying, Wentao Shang, Xingxing Wei, Yinpeng Dong, Bo Yang, Shengyin Jiang, Zeliang Ma, Dengyi Ji, Haiwen Li, Xingliang Huang, Yu Tian, Genghua Kou, Fan Jia, Yingfei Liu, Tiancai Wang, Ying Li, Xiaoshuai Hao, Yifan Yang, Hui Zhang, Mengchuan Wei, Yi Zhou, Haimei Zhao, Jing Zhang, Jinke Li, Xiao He, Xiaoqiang Cheng, Bingyang Zhang, Lirong Zhao, Dianlei Ding, Fangsheng Liu, Yixiang Yan, Hongming Wang, Nanfei Ye, Lun Luo, Yubo Tian, Yiwei Zuo, Zhe Cao, Yi Ren, Yunfan Li, Wenjie Liu, Xun Wu, Yifan Mao, Ming Li, Jian Liu, Jiayang Liu, Zihan Qin, Cunxi Chu, Jialei Xu, Wenbo Zhao, Junjun Jiang, Xianming Liu, Ziyan Wang, Chiwei Li, Shilong Li, Chendong Yuan, Songyue Yang, Wentao Liu, Peng Chen, Bin Zhou, Yubo Wang, Chi Zhang, Jianhang Sun, Hai Chen, Xiao Yang, Lizhong Wang, Dongyi Fu, Yongchun Lin, Huitong Yang, Haoang Li, Yadan Luo, Xianjing Cheng, Yong Xu,
- Abstract summary: The 2024 RoboDrive Challenge was crafted to propel the development of driving perception technologies.
This year's challenge consisted of five distinct tracks and attracted 140 registered teams from 93 institutes across 11 countries.
The competition culminated in 15 top-performing solutions.
- Score: 136.32656319458158
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In the realm of autonomous driving, robust perception under out-of-distribution conditions is paramount for the safe deployment of vehicles. Challenges such as adverse weather, sensor malfunctions, and environmental unpredictability can severely impact the performance of autonomous systems. The 2024 RoboDrive Challenge was crafted to propel the development of driving perception technologies that can withstand and adapt to these real-world variabilities. Focusing on four pivotal tasks -- BEV detection, map segmentation, semantic occupancy prediction, and multi-view depth estimation -- the competition laid down a gauntlet to innovate and enhance system resilience against typical and atypical disturbances. This year's challenge consisted of five distinct tracks and attracted 140 registered teams from 93 institutes across 11 countries, resulting in nearly one thousand submissions evaluated through our servers. The competition culminated in 15 top-performing solutions, which introduced a range of innovative approaches including advanced data augmentation, multi-sensor fusion, self-supervised learning for error correction, and new algorithmic strategies to enhance sensor robustness. These contributions significantly advanced the state of the art, particularly in handling sensor inconsistencies and environmental variability. Participants, through collaborative efforts, pushed the boundaries of current technologies, showcasing their potential in real-world scenarios. Extensive evaluations and analyses provided insights into the effectiveness of these solutions, highlighting key trends and successful strategies for improving the resilience of driving perception systems. This challenge has set a new benchmark in the field, providing a rich repository of techniques expected to guide future research in this field.
Related papers
- Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations [48.924085579865334]
Analyzing human data is crucial for developing autonomous systems that replicate safe driving practices.
This paper presents a comparative evaluation of human compliance with traffic and safety rules across multiple trajectory prediction datasets.
arXiv Detail & Related papers (2024-11-04T09:21:00Z) - ICPR 2024 Competition on Safe Segmentation of Drive Scenes in Unstructured Traffic and Adverse Weather Conditions [1.4874918394223613]
The ICPR 2024 Competition on Safe of Drive Scenes in Unstructured Traffic and Adverse Weather Conditions served as a rigorous platform to evaluate and benchmark state-of-the-art semantic segmentation models.
A key aspect of the competition was the use and improvement of the Safe mean Intersection over Union (Safe mIoU) metric.
The results of the competition set new benchmarks in the domain, highlighting the critical role of safety in deploying autonomous vehicles in real-world scenarios.
arXiv Detail & Related papers (2024-09-09T04:42:57Z) - Acceleration method for generating perception failure scenarios based on editing Markov process [0.0]
This study proposes an accelerated generation method for perception failure scenarios tailored to the underground parking garage environment.
The method generates an intelligent testing environment with a high density of perception failure scenarios.
It edits the Markov process within the perception failure scenario data to increase the density of critical information in the training data.
arXiv Detail & Related papers (2024-07-01T05:33:48Z) - Collaborative Perception for Connected and Autonomous Driving:
Challenges, Possible Solutions and Opportunities [10.749959052350594]
Collaborative perception with connected and autonomous vehicles (CAVs) shows a promising solution to overcoming these limitations.
In this article, we first identify the challenges of collaborative perception, such as data sharing asynchrony, data volume, and pose errors.
We propose a scheme to deal with communication efficiency and latency problems, which is a channel-aware collaborative perception framework.
arXiv Detail & Related papers (2024-01-03T05:33:14Z) - RainSD: Rain Style Diversification Module for Image Synthesis
Enhancement using Feature-Level Style Distribution [5.500457283114346]
This paper presents a synthetic road dataset with sensor blockage generated from real road dataset BDD100K.
Using this dataset, the degradation of diverse multi-task networks for autonomous driving has been thoroughly evaluated and analyzed.
The tendency of the performance degradation of deep neural network-based perception systems for autonomous vehicle has been analyzed in depth.
arXiv Detail & Related papers (2023-12-31T11:30:42Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - SHIFT: A Synthetic Driving Dataset for Continuous Multi-Task Domain
Adaptation [152.60469768559878]
SHIFT is the largest multi-task synthetic dataset for autonomous driving.
It presents discrete and continuous shifts in cloudiness, rain and fog intensity, time of day, and vehicle and pedestrian density.
Our dataset and benchmark toolkit are publicly available at www.vis.xyz/shift.
arXiv Detail & Related papers (2022-06-16T17:59:52Z) - Challenges of engineering safe and secure highly automated vehicles [0.0]
This paper sets out to summarize the major challenges that are still to overcome for achieving safe, secure, reliable and trustworthy highly automated vehicles (HAV)
Four challenges have been identified as being the main obstacles to realizing HAV: Realization of continuous, post-deployment systems improvement, handling of uncertainties and incomplete information, verification of HAV with machine learning components, and prediction.
arXiv Detail & Related papers (2021-03-05T08:52:31Z) - Towards robust sensing for Autonomous Vehicles: An adversarial
perspective [82.83630604517249]
It is of primary importance that the resulting decisions are robust to perturbations.
Adversarial perturbations are purposefully crafted alterations of the environment or of the sensory measurements.
A careful evaluation of the vulnerabilities of their sensing system(s) is necessary in order to build and deploy safer systems.
arXiv Detail & Related papers (2020-07-14T05:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.