論文の概要: Vision Augmentation Prediction Autoencoder with Attention Design (VAPAAD)
- arxiv url: http://arxiv.org/abs/2404.10096v2
- Date: Wed, 17 Apr 2024 02:02:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 12:36:56.386165
- Title: Vision Augmentation Prediction Autoencoder with Attention Design (VAPAAD)
- Title(参考訳): 注意設計付き視覚拡張予測オートエンコーダ(VAPAAD)
- Authors: Yiqiao Yin,
- Abstract要約: 本研究では、注意機構をシーケンス予測に統合する革新的なアプローチである、意識設計付き視覚拡張予測オートエンコーダ(VAPAAD)を紹介する。
VAPAADはデータ拡張、ConvLSTM2Dレイヤ、およびカスタムビルドのセルフアテンションメカニズムを組み合わせて、シーケンス内の健全な特徴に効果的に集中し、予測精度とコンテキスト認識分析を強化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advancements in sequence prediction have significantly improved the accuracy of video data interpretation; however, existing models often overlook the potential of attention-based mechanisms for next-frame prediction. This study introduces the Vision Augmentation Prediction Autoencoder with Attention Design (VAPAAD), an innovative approach that integrates attention mechanisms into sequence prediction, enabling nuanced analysis and understanding of temporal dynamics in video sequences. Utilizing the Moving MNIST dataset, we demonstrate VAPAAD's robust performance and superior handling of complex temporal data compared to traditional methods. VAPAAD combines data augmentation, ConvLSTM2D layers, and a custom-built self-attention mechanism to effectively focus on salient features within a sequence, enhancing predictive accuracy and context-aware analysis. This methodology not only adheres to human cognitive processes during video interpretation but also addresses limitations in conventional models, which often struggle with the variability inherent in video sequences. The experimental results confirm that VAPAAD outperforms existing models, especially in integrating attention mechanisms, which significantly improve predictive performance.
- Abstract(参考訳): 近年のシーケンス予測の進歩はビデオデータ解釈の精度を大幅に向上させたが、既存のモデルは、次のフレーム予測のための注意に基づくメカニズムの可能性を見落としていることが多い。
本研究では,視覚強調予測オートエンコーダ(VAPAAD, Vision Augmentation Prediction Autoencoder with Attention Design)を紹介した。
移動MNISTデータセットを利用することで、VAPAADの頑健なパフォーマンスと、従来の手法と比較して複雑な時間データの優れたハンドリングを実証する。
VAPAADはデータ拡張、ConvLSTM2Dレイヤ、およびカスタムビルドのセルフアテンションメカニズムを組み合わせて、シーケンス内の健全な特徴に効果的に集中し、予測精度とコンテキスト認識分析を強化する。
この手法は、ビデオ解釈中に人間の認知過程に固執するだけでなく、従来のモデルにおける制限にも対処する。
実験の結果,VAPAADは既存のモデルよりも優れており,特に注意機構の統合により予測性能が著しく向上することがわかった。
関連論文リスト
- VidMan: Exploiting Implicit Dynamics from Video Diffusion Model for Effective Robot Manipulation [79.00294932026266]
VidManは、安定性を高め、データ利用効率を向上させるために、2段階のトレーニングメカニズムを使用する新しいフレームワークである。
我々のフレームワークは、CALVINベンチマークで最先端のベースラインモデルGR-1を上回り、11.7%の相対的な改善を実現し、OXEの小規模データセットで9%以上の精度向上を示す。
論文 参考訳(メタデータ) (2024-11-14T03:13:26Z) - E-Motion: Future Motion Simulation via Event Sequence Diffusion [86.80533612211502]
イベントベースのセンサーは、これまで達成できなかった詳細と精度で将来の動きを予測するユニークな機会を提供する可能性がある。
本稿では,映像拡散モデルの強力な学習能力とイベントカメラのリッチな動作情報とを,モーションシミュレーションフレームワークとして統合することを提案する。
本研究は,コンピュータビジョンシステムの解釈能力と予測精度の向上に向けた今後の研究の方向性を示唆するものである。
論文 参考訳(メタデータ) (2024-10-11T09:19:23Z) - Sequential Recommendation via Adaptive Robust Attention with Multi-dimensional Embeddings [7.207685588038045]
逐次レコメンデーションモデルは自己認識機構を用いて最先端のパフォーマンスを達成した。
アイテムIDと位置埋め込みのみの使用を超えて移動すると、次の項目を予測するときにかなりの精度が向上する。
モデルの頑健さと一般化を改善するため,レイヤワイドノイズインジェクション(LNI)正則化を用いたミックスアテンション機構を導入する。
論文 参考訳(メタデータ) (2024-09-08T08:27:22Z) - Enhancing Dynamical System Modeling through Interpretable Machine
Learning Augmentations: A Case Study in Cathodic Electrophoretic Deposition [0.8796261172196743]
本稿では,物理システムのモデリング向上を目的とした包括的データ駆動フレームワークを提案する。
実証的応用として,電顕的電気泳動沈着(EPD)のモデル化を追求する。
論文 参考訳(メタデータ) (2024-01-16T14:58:21Z) - Enhanced LFTSformer: A Novel Long-Term Financial Time Series Prediction Model Using Advanced Feature Engineering and the DS Encoder Informer Architecture [0.8532753451809455]
本研究では,拡張LFTSformerと呼ばれる長期金融時系列の予測モデルを提案する。
このモデルは、いくつかの重要なイノベーションを通じて、自分自身を区別する。
さまざまなベンチマークストックマーケットデータセットに関するシステマティックな実験は、強化LFTSformerが従来の機械学習モデルより優れていることを示している。
論文 参考訳(メタデータ) (2023-10-03T08:37:21Z) - Revisiting Structured Variational Autoencoders [11.998116457994994]
構造化変動オートエンコーダ(SVAE)は、潜伏変数の確率的グラフィカルモデル、観測データに潜伏変数をリンクするディープニューラルネットワーク、近似後部推論のための構造探索アルゴリズムを組み合わせる。
その概念的優雅さにもかかわらず、SVAEは実装が困難であることが証明され、より一般的なアプローチが実際に好まれている。
ここでは、現代の機械学習ツールを使用してSVAEを再検討し、精度と効率の両面で、より一般的な選択肢よりも優位性を示す。
論文 参考訳(メタデータ) (2023-05-25T23:51:18Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Bootstrap Motion Forecasting With Self-Consistent Constraints [52.88100002373369]
自己整合性制約を用いた動き予測をブートストラップする新しい枠組みを提案する。
運動予測タスクは、過去の空間的・時間的情報を組み込むことで、車両の将来の軌跡を予測することを目的としている。
提案手法は,既存手法の予測性能を常に向上することを示す。
論文 参考訳(メタデータ) (2022-04-12T14:59:48Z) - Building Interpretable Models for Business Process Prediction using
Shared and Specialised Attention Mechanisms [5.607831842909669]
我々は、解釈可能なモデルを構築することにより、予測プロセス分析における「ブラックボックス」問題に対処する。
本稿では,特定のプロセスイベントが予測に与える影響を捉えるイベントアテンションと,その予測に影響を及ぼすイベントの属性を明らかにする属性アテンションの2つのタイプを提案する。
論文 参考訳(メタデータ) (2021-09-03T10:17:05Z) - CCVS: Context-aware Controllable Video Synthesis [95.22008742695772]
プレゼンテーションでは、古いビデオクリップから新しいビデオクリップを合成するための自己教師付き学習アプローチを紹介している。
時間的連続性のための文脈情報と微妙な制御のための補助情報に基づいて合成過程を規定する。
論文 参考訳(メタデータ) (2021-07-16T17:57:44Z) - SparseBERT: Rethinking the Importance Analysis in Self-attention [107.68072039537311]
トランスフォーマーベースのモデルは、その強力な能力のために自然言語処理(NLP)タスクに人気がある。
事前学習モデルの注意マップの可視化は,自己着脱機構を理解するための直接的な方法の一つである。
本研究では,sparsebert設計の指導にも適用可能な微分可能アテンションマスク(dam)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-25T14:13:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。