論文の概要: Sequential Recommendation via Adaptive Robust Attention with Multi-dimensional Embeddings
- arxiv url: http://arxiv.org/abs/2409.05022v1
- Date: Sun, 8 Sep 2024 08:27:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 19:40:09.915605
- Title: Sequential Recommendation via Adaptive Robust Attention with Multi-dimensional Embeddings
- Title(参考訳): 多次元埋め込みを用いた適応ロバスト注意による逐次レコメンデーション
- Authors: Linsey Pang, Amir Hossein Raffiee, Wei Liu, Keld Lundgaard,
- Abstract要約: 逐次レコメンデーションモデルは自己認識機構を用いて最先端のパフォーマンスを達成した。
アイテムIDと位置埋め込みのみの使用を超えて移動すると、次の項目を予測するときにかなりの精度が向上する。
モデルの頑健さと一般化を改善するため,レイヤワイドノイズインジェクション(LNI)正則化を用いたミックスアテンション機構を導入する。
- 参考スコア(独自算出の注目度): 7.207685588038045
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sequential recommendation models have achieved state-of-the-art performance using self-attention mechanism. It has since been found that moving beyond only using item ID and positional embeddings leads to a significant accuracy boost when predicting the next item. In recent literature, it was reported that a multi-dimensional kernel embedding with temporal contextual kernels to capture users' diverse behavioral patterns results in a substantial performance improvement. In this study, we further improve the sequential recommender model's robustness and generalization by introducing a mix-attention mechanism with a layer-wise noise injection (LNI) regularization. We refer to our proposed model as adaptive robust sequential recommendation framework (ADRRec), and demonstrate through extensive experiments that our model outperforms existing self-attention architectures.
- Abstract(参考訳): 逐次レコメンデーションモデルは自己認識機構を用いて最先端のパフォーマンスを達成した。
その後、アイテムIDと位置埋め込みのみを用いることで、次の項目を予測する際にかなりの精度が向上することが判明した。
近年の文献では、ユーザの多様な行動パターンを捉えるために、時間的コンテキストカーネルを組み込んだ多次元カーネルが大幅に性能改善をもたらすことが報告されている。
本研究では,レイヤワイドノイズインジェクション(LNI)正則化を用いたミックスアテンション機構を導入することにより,シーケンシャルレコメンダモデルの堅牢性と一般化をさらに改善する。
提案モデルについて,適応的ロバストシーケンシャルレコメンデーションフレームワーク (ADRRec) として言及し,本モデルが既存の自己意識アーキテクチャより優れていることを示す。
関連論文リスト
- Breaking Determinism: Fuzzy Modeling of Sequential Recommendation Using Discrete State Space Diffusion Model [66.91323540178739]
シークエンシャルレコメンデーション(SR)は、ユーザーが過去の行動に基づいて興味を持つかもしれない項目を予測することを目的としている。
我々はSRを新しい情報理論の観点から再検討し、逐次モデリング手法がユーザの行動のランダム性と予測不可能性を適切に把握できないことを発見した。
ファジィ情報処理理論に触発された本論文では,制限を克服し,ユーザの関心事の進化をよりよく捉えるために,ファジィなインタラクションシーケンスの組を導入する。
論文 参考訳(メタデータ) (2024-10-31T14:52:01Z) - Causality-Enhanced Behavior Sequence Modeling in LLMs for Personalized Recommendation [47.29682938439268]
本稿では,ユーザ嗜好モデルを改善するために,CFT法を提案する。
モデル出力に対する行動系列の因果的影響を特定するために, 反ファクト推論を用いる。
実世界のデータセットの実験により、CFTは行動シーケンスモデリングを効果的に改善することを示した。
論文 参考訳(メタデータ) (2024-10-30T08:41:13Z) - Generative Diffusion Models for Sequential Recommendations [7.948486055890262]
変分オートエンコーダ(VAE)やGAN(Generative Adversarial Networks)のような生成モデルは、逐次レコメンデーションタスクにおいて有望であることを示している。
本研究では、ロバスト性を改善するためにDiffuRecアーキテクチャの拡張を導入し、関連するユーザとイテムのインタラクションをよりよく捉えるために、Approximatorにクロスアテンション機構を組み込んだ。
論文 参考訳(メタデータ) (2024-10-25T09:39:05Z) - Bridging User Dynamics: Transforming Sequential Recommendations with Schrödinger Bridge and Diffusion Models [49.458914600467324]
拡散に基づく逐次レコメンデーションモデルにSchr"odinger Bridgeを導入し、SdifRecモデルを作成する。
また、ユーザクラスタリング情報を誘導条件として利用するcon-SdifRecと呼ばれるSdifRecの拡張版も提案する。
論文 参考訳(メタデータ) (2024-08-30T09:10:38Z) - Behavior-Dependent Linear Recurrent Units for Efficient Sequential Recommendation [18.75561256311228]
RecBLRは、振舞い依存リニアリカレントユニットに基づく効率的なシークエンシャルレコメンデーションモデルである。
本モデルは,ユーザの行動モデリングとレコメンデーション性能を大幅に向上させる。
論文 参考訳(メタデータ) (2024-06-18T13:06:58Z) - Consensus-Adaptive RANSAC [104.87576373187426]
本稿では,パラメータ空間の探索を学習する新しいRANSACフレームワークを提案する。
注意機構は、ポイント・ツー・モデル残差のバッチで動作し、軽量のワンステップ・トランスフォーマーで見いだされたコンセンサスを考慮するために、ポイント・ツー・モデル推定状態を更新する。
論文 参考訳(メタデータ) (2023-07-26T08:25:46Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
GAN(Generative Adversarial Networks)とVAE(VAE)の2つの顕著な生成モデル
GANは不安定な最適化に苦しむ一方、VAEは後続の崩壊と過度に平らな世代である。
本稿では,シーケンスエンコーダ,クロスアテンティブデノナイジングデコーダ,ステップワイズディフューザを含む条件付きデノナイジング拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T15:32:59Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendation Describes a set of technique to model dynamic user behavior to order to predict future interaction in sequence user data。
データスパーシリティやノイズの多いデータなど、古くて新しい問題はまだ残っている。
逐次レコメンデーション(CoSeRec)のためのコントラスト型自己監督学習を提案する。
論文 参考訳(メタデータ) (2021-08-14T07:15:25Z) - Adversarial and Contrastive Variational Autoencoder for Sequential
Recommendation [25.37244686572865]
本稿では、逐次レコメンデーションのためのAdversarial and Contrastive Variational Autoencoder (ACVAE) と呼ばれる新しい手法を提案する。
まず,本モデルが高品質な潜在変数を生成することを可能にするadversarial variational bayesフレームワークの下で,シーケンス生成のためのadversarial trainingを導入する。
さらに、シーケンスをエンコードする場合、シーケンス内のグローバルおよびローカルの関係をキャプチャするために、繰り返しおよび畳み込み構造を適用します。
論文 参考訳(メタデータ) (2021-03-19T09:01:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。