論文の概要: Reinforcement Learning from Multi-role Debates as Feedback for Bias Mitigation in LLMs
- arxiv url: http://arxiv.org/abs/2404.10160v3
- Date: Wed, 12 Jun 2024 12:42:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 22:24:31.773503
- Title: Reinforcement Learning from Multi-role Debates as Feedback for Bias Mitigation in LLMs
- Title(参考訳): LLMにおけるバイアス軽減のフィードバックとしての多変数議論からの強化学習
- Authors: Ruoxi Cheng, Haoxuan Ma, Shuirong Cao, Tianyu Shi,
- Abstract要約: 現在のバイアス軽減手法は、コストのかかる人的フィードバック、他のトピックへの転送可能性の欠如、パフォーマンスの低下に頼っている。
RLDF(Reinforcement Learning from Multi-role Debates as Feedback)を提案する。
- 参考スコア(独自算出の注目度): 2.8436446946726552
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Biases in LLMs can harm user experience and societal outcomes. Current bias mitigation methods such as RLHF usually rely on costly human feedback, lack transferability to other topics, and show poor performance. We find that informing the LLMs that their generated content is not generated by them and querying about potential biases greatly boosts their awareness and ability to mitigate biases. Based on this, we propose RLDF (Reinforcement Learning from Multi-role Debates as Feedback), replacing human feedback with AI for bias mitigation. RLDF engages LLMs in multi-role debates to expose biases and gradually reduce biases in each iteration using a ranking scoring mechanism. The dialogue are then used to create a dataset composed of both high bias and low bias instances to train the reward model in reinforcement learning. This dataset can be generated by the same LLM for self-reflection or a superior LLM like an API which guides the former one in a teacher-student mode. Experimental results across different LLMs and types of bias show the effectiveness of our approach in bias mitigation.
- Abstract(参考訳): LLMのバイアスは、ユーザエクスペリエンスや社会的成果を損なう可能性がある。
RLHFのような現在のバイアス軽減手法は、通常、コストのかかる人間のフィードバックに頼り、他のトピックへの転送可能性に欠け、性能が劣っている。
LLMが生成したコンテンツが生成されていないことを通知し、潜在的なバイアスについて問い合わせると、その認識とバイアスを緩和する能力が大きく向上することがわかった。
そこで我々は,RLDF(Reinforcement Learning from Multi-role Debates as Feedback)を提案する。
RLDFは、複数ロールの議論にLLMを巻き込み、バイアスを露呈し、ランキングスコア機構を使用して各イテレーションにおけるバイアスを徐々に減少させる。
次にダイアログを使用して、高いバイアスと低いバイアスのインスタンスからなるデータセットを作成し、強化学習における報酬モデルをトレーニングする。
このデータセットは、自己回帰のための同一のLLMや、教師学生モードで前者をガイドするAPIのような優れたLLMによって生成される。
異なるLLMおよび種類のバイアスに対する実験結果から, バイアス緩和におけるアプローチの有効性が示唆された。
関連論文リスト
- Supporting Self-Reflection at Scale with Large Language Models: Insights from Randomized Field Experiments in Classrooms [7.550701021850185]
本研究では,大規模言語モデル (LLMs) が学生の反省会後リフレクションに役立てる可能性について検討する。
大学コンピュータサイエンス科でランダムフィールド実験を2回行った。
論文 参考訳(メタデータ) (2024-06-01T02:41:59Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - Large Language Models are Inconsistent and Biased Evaluators [2.136983452580014]
我々は,Large Language Models (LLMs) が親しみの偏りを示し,評価の歪んだ分布を示すため,評価値の偏りを示すことを示した。
また, LLM は不整合性評価器であり, テキスト品質の人間の理解に欠かせない相違を誘発する「サンプル間合意」が低く, 感度が高いことがわかった。
論文 参考訳(メタデータ) (2024-05-02T20:42:28Z) - Exploring Value Biases: How LLMs Deviate Towards the Ideal [57.99044181599786]
LLM(Large-Language-Models)は幅広いアプリケーションにデプロイされ、その応答は社会的影響を増大させる。
価値バイアスは、人間の研究結果と同様、異なるカテゴリにわたるLSMにおいて強いことが示される。
論文 参考訳(メタデータ) (2024-02-16T18:28:43Z) - Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves [57.974103113675795]
本稿では,Rephrase and Respond'(RaR)という手法を提案する。
RaRは、パフォーマンスを改善するためのシンプルだが効果的なプロンプト方法として機能する。
また,RaRは理論的にも経験的にも,一般的なChain-of-Thought(CoT)法と相補的であることを示す。
論文 参考訳(メタデータ) (2023-11-07T18:43:34Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
トレーニングセットの低品質データは、通常、チューニングのチューニングに有害である。
我々は「反射チューニング」と呼ばれる新しい手法を提案する。
このアプローチでは、オラクルLSMを使用して、データ内の命令や応答の質を検査し、向上することで、元のトレーニングデータをリサイクルする。
論文 参考訳(メタデータ) (2023-10-18T05:13:47Z) - Verbosity Bias in Preference Labeling by Large Language Models [10.242500241407466]
大規模言語モデル(LLM)の評価に伴うバイアスについて検討する。
冗長性バイアス( verbosity bias) -- LLM では,たとえ同じような品質を持つとしても,より冗長な回答を好む場合があります。
論文 参考訳(メタデータ) (2023-10-16T05:19:02Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
本稿では,事前学習した報酬モデルを診断ツールとして活用する,新たな合理的評価手法を提案する。
より長い会話は、質問を理解する能力の観点から言語モデルの包括的把握を示す。
この結果から,LLMは日常言語でよく使われる単語レベルの摂動に対する脆弱性をしばしば示している。
論文 参考訳(メタデータ) (2023-09-20T09:23:46Z) - Rethinking Learning Rate Tuning in the Era of Large Language Models [11.87985768634266]
大規模言語モデル(LLM)は、人間のような優れた予測性能を達成するために、近年のディープラーニングの成功を表している。
ファインチューニングを活用して、様々な現実世界のアプリケーションにLLMを適用するための主要な戦略となっている。
既存の学習率ポリシは、主に従来のディープニューラルネットワーク(DNN)のトレーニング用に設計されている。
論文 参考訳(メタデータ) (2023-09-16T03:37:00Z) - A Survey on Fairness in Large Language Models [28.05516809190299]
大規模言語モデル(LLM)は、強力なパフォーマンスと開発見通しを示している。
LLMは、未処理のトレーニングデータから社会的バイアスをキャプチャし、そのバイアスを下流のタスクに伝達する。
不公平なLLMシステムは、望ましくない社会的影響と潜在的な害がある。
論文 参考訳(メタデータ) (2023-08-20T03:30:22Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
大型言語モデル (LLM) は、一般的な要約データセットにおける元の参照要約よりも人間のアノテーションに好まれる。
より小さなテキスト要約モデルに対するLLM-as-reference学習設定について検討し,その性能が大幅に向上するかどうかを検討する。
論文 参考訳(メタデータ) (2023-05-23T16:56:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。