Simulating Chemistry on Bosonic Quantum Devices
- URL: http://arxiv.org/abs/2404.10214v3
- Date: Fri, 5 Jul 2024 22:07:28 GMT
- Title: Simulating Chemistry on Bosonic Quantum Devices
- Authors: Rishab Dutta, Delmar G. A. Cabral, Ningyi Lyu, Nam P. Vu, Yuchen Wang, Brandon Allen, Xiaohan Dan, Rodrigo G. Cortiñas, Pouya Khazaei, Max Schäfer, Alejandro C. C. d. Albornoz, Scott E. Smart, Scott Nie, Michel H. Devoret, David A. Mazziotti, Prineha Narang, Chen Wang, James D. Whitfield, Angela K. Wilson, Heidi P. Hendrickson, Daniel A. Lidar, Francisco Pérez-Bernal, Lea F. Santos, Sabre Kais, Eitan Geva, Victor S. Batista,
- Abstract summary: Bosonic quantum devices offer a novel approach to realize quantum computations.
We review recent progress and future potential of using bosonic quantum devices for addressing a wide range of challenging chemical problems.
- Score: 30.89742280590898
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bosonic quantum devices offer a novel approach to realize quantum computations, where the quantum two-level system (qubit) is replaced with the quantum (an)harmonic oscillator (qumode) as the fundamental building block of the quantum simulator. The simulation of chemical structure and dynamics can then be achieved by representing or mapping the system Hamiltonians in terms of bosonic operators. In this perspective, we review recent progress and future potential of using bosonic quantum devices for addressing a wide range of challenging chemical problems, including the calculation of molecular vibronic spectra, the simulation of gas-phase and solution-phase adiabatic and nonadiabatic chemical dynamics, the efficient solution of molecular graph theory problems, and the calculations of electronic structure.
Related papers
- Analog Quantum Simulation of Coupled Electron-Nuclear Dynamics in Molecules [0.0]
We present the first analog quantum simulation approach for molecular vibronic dynamics in a pre-BO framework.
We show that our approach has exponential savings in resource and computational costs compared to the equivalent classical algorithms.
arXiv Detail & Related papers (2024-09-06T17:42:34Z) - Non-adiabatic quantum dynamics with fermionic subspace-expansion
algorithms on quantum computers [0.0]
We introduce a novel computational framework for excited-states molecular quantum dynamics simulations.
We calculate the required excited-state transition properties with different flavors of the quantum subspace expansion and quantum equation-of-motion algorithms.
We show that only methods that can capture both weak and strong electron correlation effects can properly describe the non-adiabatic effects that tune the reactive event.
arXiv Detail & Related papers (2024-02-23T15:09:19Z) - Refining resource estimation for the quantum computation of vibrational
molecular spectra through Trotter error analysis [0.0]
We accurately estimate quantum resources, such as number of qubits and quantum gates, required for vibrational structure calculations on a programmable quantum computer.
This work serves as a guide for analyzing the potential quantum advantage within vibrational structure simulations.
arXiv Detail & Related papers (2023-11-07T04:52:27Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - TenCirChem: An Efficient Quantum Computational Chemistry Package for the
NISQ Era [11.231358835691962]
TenCirChem is an open-source library for variation simulatingal quantum algorithms for quantum computational chemistry.
TenCirChem shows high performance on the simulation of unitary coupled-cluster circuits.
TenCirChem is capable of running real quantum hardware experiments.
arXiv Detail & Related papers (2023-03-20T01:47:45Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum computation of silicon electronic band structure [0.0]
We show that unprecedented methods used in quantum chemistry, designed to simulate molecules on quantum processors, can be extended to calculate properties of periodic solids.
In particular, we present minimal depth circuits implementing the variational quantum eigensolver algorithm and successfully use it to compute the band structure of silicon on a quantum machine for the first time.
arXiv Detail & Related papers (2020-06-06T07:45:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.