論文の概要: Learnable Prompt for Few-Shot Semantic Segmentation in Remote Sensing Domain
- arxiv url: http://arxiv.org/abs/2404.10307v1
- Date: Tue, 16 Apr 2024 06:33:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 17:52:48.270793
- Title: Learnable Prompt for Few-Shot Semantic Segmentation in Remote Sensing Domain
- Title(参考訳): リモートセンシング領域におけるFew-Shot Semantic Segmentationのための学習可能なプロンプト
- Authors: Steve Andreas Immanuel, Hagai Raja Sinulingga,
- Abstract要約: Few-shotセグメンテーション(Few-shot segmentation)は、いくつかのアノテーション付きの例だけを与えられた画像内でオブジェクトや新しいクラスの領域を分割するタスクである。
私たちはベースモデルとしてSegGPTを使用し、ベースクラスでそれをトレーニングします。
通常リモートセンシング領域に存在する様々なオブジェクトサイズを扱うために、パッチベースの予測を行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Few-shot segmentation is a task to segment objects or regions of novel classes within an image given only a few annotated examples. In the generalized setting, the task extends to segment both the base and the novel classes. The main challenge is how to train the model such that the addition of novel classes does not hurt the base classes performance, also known as catastrophic forgetting. To mitigate this issue, we use SegGPT as our base model and train it on the base classes. Then, we use separate learnable prompts to handle predictions for each novel class. To handle various object sizes which typically present in remote sensing domain, we perform patch-based prediction. To address the discontinuities along patch boundaries, we propose a patch-and-stitch technique by re-framing the problem as an image inpainting task. During inference, we also utilize image similarity search over image embeddings for prompt selection and novel class filtering to reduce false positive predictions. Based on our experiments, our proposed method boosts the weighted mIoU of a simple fine-tuned SegGPT from 15.96 to 35.08 on the validation set of few-shot OpenEarthMap dataset given in the challenge.
- Abstract(参考訳): Few-shotセグメンテーション(Few-shot segmentation)は、いくつかのアノテーション付きの例だけを与えられた画像内でオブジェクトや新しいクラスの領域を分割するタスクである。
一般化された設定では、タスクはベースと新しいクラスの両方をセグメント化する。
主な課題は、新しいクラスの追加がベースクラスのパフォーマンスを傷つけないようにモデルをトレーニングする方法である。
この問題を緩和するために、ベースモデルとしてSegGPTを使用し、ベースクラスでそれをトレーニングします。
そして、学習可能なプロンプトを別々に使い、新しいクラスの予測を処理します。
通常リモートセンシング領域に存在する様々なオブジェクトサイズを扱うために、パッチベースの予測を行う。
パッチ境界に沿った不連続性に対処するため,パッチ・アンド・スティッチ手法を提案する。
また,画像埋め込みによる画像類似性探索を用いて,画像選択と新しいクラスフィルタリングを行い,偽陽性予測の低減を図る。
提案手法は,簡単な微調整のSegGPTの重み付きmIoUを15.96から35.08に向上させる。
関連論文リスト
- SegVG: Transferring Object Bounding Box to Segmentation for Visual Grounding [56.079013202051094]
ボックスレベルのアノテーションを信号として転送する新しい手法であるSegVGを提案する。
このアプローチでは,ボックスレベルのレグレッションとピクセルレベルのセグメンテーションの両方の信号としてアノテーションを反復的に利用することができる。
論文 参考訳(メタデータ) (2024-07-03T15:30:45Z) - IFSENet : Harnessing Sparse Iterations for Interactive Few-shot Segmentation Excellence [2.822194296769473]
新しいクラスのセグメンテーションを学ぶために必要な画像の数を減らします。
インタラクティブなセグメンテーション技術は、一度に1つのオブジェクトのセグメンテーションを漸進的に改善することのみに焦点を当てます。
2つの概念を組み合わせることで、新しいクラスのセグメンテーションモデルをトレーニングするのに要する労力を大幅に削減する。
論文 参考訳(メタデータ) (2024-03-22T10:15:53Z) - Reflection Invariance Learning for Few-shot Semantic Segmentation [53.20466630330429]
Few-shot semantic segmentation (FSS) は、いくつかのアノテーション付きサポートイメージを持つクエリイメージにおいて、目に見えないクラスのオブジェクトをセグメントすることを目的としている。
本稿では,マルチビューマッチング方式でリフレクション不変性をマイニングするための,新しい数ショットセグメンテーションフレームワークを提案する。
PASCAL-$5textiti$とCOCO-$20textiti$データセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-01T15:14:58Z) - Cross-domain Few-shot Segmentation with Transductive Fine-tuning [29.81009103722184]
本稿では,数ショットの条件下でのクエリ画像の集合に基づいて,ベースモデルをトランスダクティブに微調整することを提案する。
提案手法は,すべてのクロスドメインタスクにおいて,FSSモデルの性能を一貫して,かつ著しく向上させることができる。
論文 参考訳(メタデータ) (2022-11-27T06:44:41Z) - Rethinking Generalization in Few-Shot Classification [28.809141478504532]
単一のイメージレベルのアノテーションは、しばしば画像の内容の小さなサブセットを正しく記述するだけである。
本稿では、textitfew-shot Learning$の文脈における意味を詳しく調べる。
我々は、きめ細かいラベルの欠如を克服するため、マスク付き画像モデリングによるネットワークの教師なしトレーニングの最近の進歩の上に構築する。
論文 参考訳(メタデータ) (2022-06-15T03:05:21Z) - Sparse Spatial Transformers for Few-Shot Learning [6.271261279657655]
限られたデータから学ぶことは、データの不足によってトレーニングされたモデルの一般化が不十分になるため、難しい。
スパース空間トランスと呼ばれる新しいトランスを用いたニューラルネットワークアーキテクチャを提案する。
本手法はタスク関連機能を見つけ,タスク関連機能を抑制する。
論文 参考訳(メタデータ) (2021-09-27T10:36:32Z) - Revisiting Deep Local Descriptor for Improved Few-Shot Classification [56.74552164206737]
textbfDense textbfClassification と textbfAttentive textbfPooling を利用して埋め込みの質を向上させる方法を示す。
広範に使われているグローバル平均プール (GAP) の代わりに, 注意深いプールを施し, 特徴マップをプールすることを提案する。
論文 参考訳(メタデータ) (2021-03-30T00:48:28Z) - Semantically Meaningful Class Prototype Learning for One-Shot Image
Semantic Segmentation [58.96902899546075]
ワンショットセマンティックイメージセグメンテーションは、1つの注釈付きイメージで新しいクラスのオブジェクト領域を分割することを目的としている。
最近の研究では、テスト時に予想される状況を模倣するために、エピソディクストレーニング戦略を採用している。
エピソードトレーニングにおいて,マルチクラスラベル情報を活用することを提案する。
ネットワークが各カテゴリに対してより意味のある機能を生成するように促すだろう。
論文 参考訳(メタデータ) (2021-02-22T12:07:35Z) - A Few Guidelines for Incremental Few-Shot Segmentation [57.34237650765928]
事前訓練されたセグメンテーションモデルと、新しいクラスを含む画像が少ないことを前提として、我々が目指すのは、以前に見たセグメンテーション能力を維持しながら、新しいクラスをセグメンテーションすることである。
このシナリオにおけるエンド・ツー・エンドのトレーニングの主な問題はどのようなものかを示します。
一 バッチ正規化統計を、バッチ正規化で修正できる新しいクラスへ向けての漂流すること。
二 旧クラスの忘れ物 正規化戦略で解決できるもの。
論文 参考訳(メタデータ) (2020-11-30T20:45:56Z) - One-Shot Image Classification by Learning to Restore Prototypes [11.448423413463916]
ワンショット画像分類は、カテゴリ毎に1つの画像しか持たないデータセット上で、イメージ分類器を訓練することを目的としている。
ワンショット学習では、既存のメトリック学習アプローチは、単一のトレーニングイメージがクラスを代表するものではない可能性があるため、パフォーマンスが低下する。
本稿では,RestoreNet で表される単純な回帰モデルを提案する。画像特徴のクラス変換を学習し,特徴空間のクラス中心に画像を移動させる。
論文 参考訳(メタデータ) (2020-05-04T02:11:30Z) - CRNet: Cross-Reference Networks for Few-Shot Segmentation [59.85183776573642]
少ないショットセグメンテーションは、少数のトレーニングイメージを持つ新しいクラスに一般化できるセグメンテーションモデルを学ぶことを目的としている。
相互参照機構により、我々のネットワークは2つの画像に共起する物体をよりよく見つけることができる。
PASCAL VOC 2012データセットの実験は、我々のネットワークが最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2020-03-24T04:55:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。