論文の概要: Towards Complex Ontology Alignment using Large Language Models
- arxiv url: http://arxiv.org/abs/2404.10329v1
- Date: Tue, 16 Apr 2024 07:13:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 17:43:04.071000
- Title: Towards Complex Ontology Alignment using Large Language Models
- Title(参考訳): 大規模言語モデルを用いた複雑なオントロジーアライメントを目指して
- Authors: Reihaneh Amini, Sanaz Saki Norouzi, Pascal Hitzler, Reza Amini,
- Abstract要約: オントロジーアライメント(オントロジーアライメント)は、異なるラベルとコンテンツ間の関係を検出するWebにおける重要なプロセスである。
近年のLarge Language Models (LLMs) の進歩は,工学的実践の強化に新たな機会をもたらす。
本稿では,LLM技術の複雑なアライメント問題への取り組みについて検討する。
- 参考スコア(独自算出の注目度): 1.3218260503808055
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Ontology alignment, a critical process in the Semantic Web for detecting relationships between different ontologies, has traditionally focused on identifying so-called "simple" 1-to-1 relationships through class labels and properties comparison. The more practically useful exploration of more complex alignments remains a hard problem to automate, and as such is largely underexplored, i.e. in application practice it is usually done manually by ontology and domain experts. Recently, the surge in Natural Language Processing (NLP) capabilities, driven by advancements in Large Language Models (LLMs), presents new opportunities for enhancing ontology engineering practices, including ontology alignment tasks. This paper investigates the application of LLM technologies to tackle the complex ontology alignment challenge. Leveraging a prompt-based approach and integrating rich ontology content so-called modules our work constitutes a significant advance towards automating the complex alignment task.
- Abstract(参考訳): 異なるオントロジー間の関係を検出するセマンティックウェブにおける重要なプロセスであるオントロジーアライメントは、伝統的に、クラスラベルとプロパティ比較を通じていわゆる「単純な」1対1の関係を特定することに重点を置いてきた。
より実用的に有用な、より複雑なアライメントの探索は、自動化するのが難しい問題であり、ほとんどの場合、アプリケーションの実践では、オントロジーやドメインの専門家が手作業で行う。
近年,Large Language Models(LLMs)の進歩にともなう自然言語処理(NLP)能力の急上昇は,オントロジーアライメントタスクを含むオントロジー工学の実践を強化する新たな機会を提供する。
本稿では,LLM技術の複雑なオントロジーアライメント問題への応用について検討する。
プロンプトベースのアプローチを活用して、いわゆるモジュールと呼ばれるリッチなオントロジーコンテンツを統合することは、複雑なアライメントタスクを自動化するための大きな進歩となります。
関連論文リスト
- End-to-End Ontology Learning with Large Language Models [11.755755139228219]
大規模言語モデル(LLM)は、オントロジー学習の様々なサブタスクを解決するために応用されている。
我々は、オントロジーの分類学的バックボーンをスクラッチから構築する汎用的でスケーラブルな方法であるOLLMによって、このギャップに対処する。
標準的なメトリクスとは対照的に、私たちのメトリクスは、グラフ間のより堅牢な構造的距離測定を定義するためにディープラーニング技術を使用します。
私たちのモデルは、arXivのような新しいドメインに効果的に適用できます。
論文 参考訳(メタデータ) (2024-10-31T02:52:39Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - Multi-step Inference over Unstructured Data [2.169874047093392]
医療、法律、金融などの分野における高い意思決定タスクは、精度、包括性、論理的一貫性のレベルを必要とする。
これらの問題に対処するための,ニューロシンボリックAIプラットフォームを開発した。
このプラットフォームは、知識抽出とアライメントのための微調整LDMと、堅牢なシンボリック推論エンジンを統合している。
論文 参考訳(メタデータ) (2024-06-26T00:00:45Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
オントロジはドメイン知識とメタデータを表現するために広く使われている。
1つの簡単な解決策は、統計分析と機械学習を統合することである。
埋め込みに関する多くの論文が出版されているが、体系的なレビューの欠如により、研究者はこの分野の包括的な理解を妨げている。
論文 参考訳(メタデータ) (2024-06-16T14:49:19Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adapt adjust of language model based on specific downstream task。
提案手法は,様々なバックボーンやベンチマーク上での最先端性能を実証し,最小限の忘れを伴い,フルセットおよび少数ショットのシナリオにおいて効果的な連続学習を実現する。
論文 参考訳(メタデータ) (2024-04-11T04:22:15Z) - Large language models as oracles for instantiating ontologies with domain-specific knowledge [0.0]
セマンティックなデータでインテリジェントなシステムを構築するには、ドメイン固有の知識を設計し、インスタンス化する必要がある。
結果として得られる経験プロセスは、時間を要する、エラーを起こしやすい、オントロジーデザイナーの個人的な背景に偏っていることが多い。
ドメイン固有の知識を自動的にインスタンス化するための,ドメインに依存しない新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-04-05T14:04:07Z) - Noise Contrastive Estimation-based Matching Framework for Low-Resource
Security Attack Pattern Recognition [49.536368818512116]
TTP(Tactics, Techniques and Procedures)は、サイバーセキュリティドメインにおける高度な攻撃パターンを表す。
そこで本研究では,TTPラベルへのテキストの割り当てが,両者の直接的な意味的類似性によって決定される,異なる学習パラダイムの問題を定式化する。
本稿では,効果的なサンプリングベース学習機構を備えたニューラルマッチングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-18T19:02:00Z) - Domain Specialization as the Key to Make Large Language Models Disruptive: A Comprehensive Survey [100.24095818099522]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野を著しく進歩させた。
広範囲のアプリケーションに対して、非常に有用でタスクに依存しない基盤を提供する。
しかし、特定の領域における洗練された問題を解決するために直接LLMを適用することは、多くのハードルを満たす。
論文 参考訳(メタデータ) (2023-05-30T03:00:30Z) - Guiding the PLMs with Semantic Anchors as Intermediate Supervision:
Towards Interpretable Semantic Parsing [57.11806632758607]
本稿では,既存の事前学習言語モデルを階層型デコーダネットワークに組み込むことを提案する。
第一原理構造をセマンティックアンカーとすることで、2つの新しい中間管理タスクを提案する。
いくつかのセマンティック解析ベンチマークで集中的な実験を行い、我々のアプローチがベースラインを一貫して上回ることを示す。
論文 参考訳(メタデータ) (2022-10-04T07:27:29Z) - Dividing the Ontology Alignment Task with Semantic Embeddings and
Logic-based Modules [15.904000789557486]
本稿では、埋め込みモデルと論理ベースのモジュールを組み合わせることで、入力マッチングタスクをより小さく、より難易度の高いタスクに正確に分割する手法を提案する。
この結果は,提案手法が実際は適切であり,非常に大規模なニューラルネットワークに対処できないシステムのワークフローに統合可能であることを示唆している。
論文 参考訳(メタデータ) (2020-02-25T14:44:12Z) - From Natural Language Instructions to Complex Processes: Issues in
Chaining Trigger Action Rules [27.61571359186679]
本稿では,意味解析のための機械実行可能な意味表現をチェーン化する複雑な文法を新たに定義する。
この文法に基づいてデータセットを作成する手法を提案する。
論文 参考訳(メタデータ) (2020-01-08T11:44:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。