BayesJudge: Bayesian Kernel Language Modelling with Confidence Uncertainty in Legal Judgment Prediction
- URL: http://arxiv.org/abs/2404.10481v1
- Date: Tue, 16 Apr 2024 11:42:06 GMT
- Title: BayesJudge: Bayesian Kernel Language Modelling with Confidence Uncertainty in Legal Judgment Prediction
- Authors: Ubaid Azam, Imran Razzak, Shelly Vishwakarma, Hakim Hacid, Dell Zhang, Shoaib Jameel,
- Abstract summary: We present a novel approach called BayesJudge that harnesses the synergy between deep learning and deep Gaussian Processes to quantify uncertainty.
Our method leverages informative priors and flexible data modelling via kernels, surpassing existing methods in both predictive accuracy and confidence estimation.
We also introduce an optimal solution to automate the scrutiny of unreliable predictions, resulting in a significant increase in the accuracy of the model's predictions by up to 27%.
- Score: 14.672477787408887
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting legal judgments with reliable confidence is paramount for responsible legal AI applications. While transformer-based deep neural networks (DNNs) like BERT have demonstrated promise in legal tasks, accurately assessing their prediction confidence remains crucial. We present a novel Bayesian approach called BayesJudge that harnesses the synergy between deep learning and deep Gaussian Processes to quantify uncertainty through Bayesian kernel Monte Carlo dropout. Our method leverages informative priors and flexible data modelling via kernels, surpassing existing methods in both predictive accuracy and confidence estimation as indicated through brier score. Extensive evaluations of public legal datasets showcase our model's superior performance across diverse tasks. We also introduce an optimal solution to automate the scrutiny of unreliable predictions, resulting in a significant increase in the accuracy of the model's predictions by up to 27\%. By empowering judges and legal professionals with more reliable information, our work paves the way for trustworthy and transparent legal AI applications that facilitate informed decisions grounded in both knowledge and quantified uncertainty.
Related papers
- Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
We present a comprehensive framework to disentangle, quantify, and mitigate uncertainty in perception and plan generation.
We propose methods tailored to the unique properties of perception and decision-making.
We show that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines.
arXiv Detail & Related papers (2024-11-03T17:32:00Z) - Quantifying calibration error in modern neural networks through evidence based theory [0.0]
This paper introduces a novel framework for quantifying the trustworthiness of neural networks by incorporating subjective logic into the evaluation of Expected Error (ECE)
We demonstrate the effectiveness of this approach through experiments on MNIST and CIFAR-10 datasets where post-calibration results indicate improved trustworthiness.
The proposed framework offers a more interpretable and nuanced assessment of AI models, with potential applications in sensitive domains such as healthcare and autonomous systems.
arXiv Detail & Related papers (2024-10-31T23:54:21Z) - The Craft of Selective Prediction: Towards Reliable Case Outcome Classification -- An Empirical Study on European Court of Human Rights Cases [1.9570703832723582]
This paper conducts an empirical investigation into how various design choices affect the reliability of COC models within the framework of selective prediction.
Our experiments on the multi-label COC task, focusing on European Court of Human Rights (ECtHR) cases, highlight the importance of a diverse yet domain-specific pre-training corpus for better calibration.
arXiv Detail & Related papers (2024-09-27T11:25:10Z) - CONFINE: Conformal Prediction for Interpretable Neural Networks [2.7477752332019256]
We introduce Conformal Prediction for Interpretable Neural Networks (CONFINE)
CONFINE generates prediction sets with statistically robust uncertainty estimates instead of point predictions to enhance model transparency and reliability.
We show that CONFINE achieves correct efficiency of up to 3.3% higher than the original accuracy, matching or exceeding prior methods.
arXiv Detail & Related papers (2024-06-01T19:34:48Z) - Trust, but Verify: Using Self-Supervised Probing to Improve
Trustworthiness [29.320691367586004]
We introduce a new approach of self-supervised probing, which enables us to check and mitigate the overconfidence issue for a trained model.
We provide a simple yet effective framework, which can be flexibly applied to existing trustworthiness-related methods in a plug-and-play manner.
arXiv Detail & Related papers (2023-02-06T08:57:20Z) - Confidence-Calibrated Face and Kinship Verification [8.570969129199467]
We introduce an effective confidence measure that allows verification models to convert a similarity score into a confidence score for any given face pair.
We also propose a confidence-calibrated approach, termed Angular Scaling (ASC), which is easy to implement and can be readily applied to existing verification models.
To the best of our knowledge, our work presents the first comprehensive confidence-calibrated solution for modern face and kinship verification tasks.
arXiv Detail & Related papers (2022-10-25T10:43:46Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - An evaluation of word-level confidence estimation for end-to-end
automatic speech recognition [70.61280174637913]
We investigate confidence estimation for end-to-end automatic speech recognition (ASR)
We provide an extensive benchmark of popular confidence methods on four well-known speech datasets.
Our results suggest a strong baseline can be obtained by scaling the logits by a learnt temperature.
arXiv Detail & Related papers (2021-01-14T09:51:59Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
We argue for considering a complementary form of transparency by estimating and communicating the uncertainty associated with model predictions.
We describe how uncertainty can be used to mitigate model unfairness, augment decision-making, and build trustworthy systems.
This work constitutes an interdisciplinary review drawn from literature spanning machine learning, visualization/HCI, design, decision-making, and fairness.
arXiv Detail & Related papers (2020-11-15T17:26:14Z) - Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
Higher-Order Influence Functions [121.10450359856242]
We develop a frequentist procedure that utilizes influence functions of a model's loss functional to construct a jackknife (or leave-one-out) estimator of predictive confidence intervals.
The DJ satisfies (1) and (2), is applicable to a wide range of deep learning models, is easy to implement, and can be applied in a post-hoc fashion without interfering with model training or compromising its accuracy.
arXiv Detail & Related papers (2020-06-29T13:36:52Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.