論文の概要: Classification of Prostate Cancer in 3D Magnetic Resonance Imaging Data based on Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2404.10548v1
- Date: Tue, 16 Apr 2024 13:18:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 16:44:15.390204
- Title: Classification of Prostate Cancer in 3D Magnetic Resonance Imaging Data based on Convolutional Neural Networks
- Title(参考訳): 畳み込みニューラルネットワークを用いた3次元磁気共鳴画像データにおける前立腺癌の分類
- Authors: Malte Rippa, Ruben Schulze, Marian Himstedt, Felice Burn,
- Abstract要約: 前立腺癌は、世界中の男性の間で一般的に診断されるがん性疾患である。
CNNは、MRIシークエンスに悪性病変が含まれているかどうかを確実に分類する能力に基づいて評価される。
最高の結果はResNet3Dによって達成され、平均精度スコアは0.4583、AUC ROCスコアは0.6214となった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Prostate cancer is a commonly diagnosed cancerous disease among men world-wide. Even with modern technology such as multi-parametric magnetic resonance tomography and guided biopsies, the process for diagnosing prostate cancer remains time consuming and requires highly trained professionals. In this paper, different convolutional neural networks (CNN) are evaluated on their abilities to reliably classify whether an MRI sequence contains malignant lesions. Implementations of a ResNet, a ConvNet and a ConvNeXt for 3D image data are trained and evaluated. The models are trained using different data augmentation techniques, learning rates, and optimizers. The data is taken from a private dataset, provided by Cantonal Hospital Aarau. The best result was achieved by a ResNet3D, yielding an average precision score of 0.4583 and AUC ROC score of 0.6214.
- Abstract(参考訳): 前立腺癌は、世界中の男性の間で一般的に診断されるがん性疾患である。
マルチパラメトリック磁気共鳴トモグラフィーやガイドバイオプシーのような最新の技術でさえ、前立腺がんの診断には時間がかかり、高度に訓練された専門家を必要としている。
本稿では,MRI 配列に悪性病変があるか否かを確実に分類する能力について,異なる畳み込みニューラルネットワーク (CNN) の評価を行った。
3次元画像データのためのResNet、ConvNet、ConvNeXtの実装を訓練し評価する。
モデルは、異なるデータ拡張テクニック、学習率、オプティマイザを使用してトレーニングされる。
データは、Cantonal Hospital Aarauが提供するプライベートデータセットから取得される。
最高の結果はResNet3Dによって達成され、平均精度スコアは0.4583、AUC ROCスコアは0.6214となった。
関連論文リスト
- Medical Slice Transformer: Improved Diagnosis and Explainability on 3D Medical Images with DINOv2 [1.6275928583134276]
医用スライストランスフォーマー(MST)フレームワークを導入し,3次元医用画像解析に2次元自己監督モデルを適用した。
MSTは畳み込みニューラルネットワークと比較して、診断精度と説明性の向上を提供する。
論文 参考訳(メタデータ) (2024-11-24T12:11:11Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Cancer-Net PCa-Gen: Synthesis of Realistic Prostate Diffusion Weighted
Imaging Data via Anatomic-Conditional Controlled Latent Diffusion [68.45407109385306]
カナダでは、前立腺がんは男性でもっとも一般的ながんであり、2022年のこの人口統計では、新しいがん症例の20%を占めている。
拡散強調画像(DWI)データを用いた前立腺癌診断,予後,治療計画のためのディープニューラルネットワークの開発には大きな関心が寄せられている。
本研究では,解剖学的条件制御型潜伏拡散戦略の導入により,現実的な前立腺DWIデータを生成するための潜伏拡散の有効性について検討した。
論文 参考訳(メタデータ) (2023-11-30T15:11:03Z) - Domain-specific transfer learning in the automated scoring of
tumor-stroma ratio from histopathological images of colorectal cancer [1.2264932946286657]
腫瘍-ストローマ比 (TSR) は多くの種類の固形腫瘍の予後因子である。
この方法は、大腸癌組織を分類するために訓練された畳み込みニューラルネットワークに基づいている。
論文 参考訳(メタデータ) (2022-12-30T12:27:27Z) - Moving from 2D to 3D: volumetric medical image classification for rectal
cancer staging [62.346649719614]
術前T2期とT3期を区別することは直腸癌治療における最も困難かつ臨床的に重要な課題である。
直腸MRIでT3期直腸癌からT2を正確に判別するための体積畳み込みニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-13T07:10:14Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Implementation of Convolutional Neural Network Architecture on 3D
Multiparametric Magnetic Resonance Imaging for Prostate Cancer Diagnosis [0.0]
磁気共鳴画像における前立腺病変の自動分類のための新しいディープラーニング手法を提案する。
提案手法は受信器動作特性曲線値0.87の領域で分類性能を達成した。
提案フレームワークは前立腺癌における医用画像の解釈を補助し,不必要な生検を減らす可能性を反映している。
論文 参考訳(メタデータ) (2021-12-29T16:47:52Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
前立腺癌(PCa)は、2020年に約141万件の新規感染者と約37万5000人の死者を出した男性の死因の1つである。
自動診断を行うには、まず前立腺組織サンプルをギガピクセル分解能全スライド画像にデジタイズする。
パッチと呼ばれる小さなサブイメージが抽出され、予測され、パッチレベルの分類が得られる。
論文 参考訳(メタデータ) (2021-05-20T18:13:58Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - Handling Missing MRI Input Data in Deep Learning Segmentation of Brain
Metastases: A Multi-Center Study [1.4463443378902883]
深層学習に基づくDropOutと呼ばれる脳転移の自動セグメンテーションのためのセグメンテーションモデルが、マルチシーケンスMRIで訓練された。
セグメンテーションの結果は、最先端のDeepLabV3モデルの性能と比較された。
DropOutモデルはDeepLabV3モデルに比べてかなり高いスコアを示した。
論文 参考訳(メタデータ) (2019-12-27T02:49:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。