論文の概要: Laplace-HDC: Understanding the geometry of binary hyperdimensional computing
- arxiv url: http://arxiv.org/abs/2404.10759v2
- Date: Fri, 26 Apr 2024 17:41:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 17:08:44.669514
- Title: Laplace-HDC: Understanding the geometry of binary hyperdimensional computing
- Title(参考訳): Laplace-HDC:二元双対超次元計算の幾何学的理解
- Authors: Saeid Pourmand, Wyatt D. Whiting, Alireza Aghasi, Nicholas F. Marshall,
- Abstract要約: 高次元二進ベクトルを用いてデータを符号化する計算手法である二進超次元計算(HDC)の幾何学について検討する。
本稿では,従来の手法を改良した新しい符号化手法Laplace-HDCを提案する。
- 参考スコア(独自算出の注目度): 2.0272430076690027
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies the geometry of binary hyperdimensional computing (HDC), a computational scheme in which data are encoded using high-dimensional binary vectors. We establish a result about the similarity structure induced by the HDC binding operator and show that the Laplace kernel naturally arises in this setting, motivating our new encoding method Laplace-HDC, which improves upon previous methods. We describe how our results indicate limitations of binary HDC in encoding spatial information from images and discuss potential solutions, including using Haar convolutional features and the definition of a translation-equivariant HDC encoding. Several numerical experiments highlighting the improved accuracy of Laplace-HDC in contrast to alternative methods are presented. We also numerically study other aspects of the proposed framework such as robustness and the underlying translation-equivariant encoding.
- Abstract(参考訳): 本稿では,高次元二進ベクトルを用いてデータを符号化する計算手法である二進超次元計算(HDC)の幾何学について検討する。
我々はHDC結合演算子によって誘導される類似構造に関する結果を確立し、Laplaceカーネルがこの設定で自然に発生することを示す。
本稿では,画像から空間情報を符号化する際の2値HDCの限界について述べるとともに,Haarの畳み込み機能の利用や,変換等価なHDC符号化の定義など,潜在的な解決策について議論する。
代替手法とは対照的に,Laplace-HDCの精度向上を示す数値実験を行った。
また、ロバストネスや基盤となる翻訳-同変符号化などのフレームワークの他の側面についても数値的に検討する。
関連論文リスト
- Thinner Latent Spaces: Detecting dimension and imposing invariance through autoencoder gradient constraints [9.380902608139902]
ネットワークの潜在層内の直交関係を利用して、非線形多様体データセットの内在次元性を推定できることを示す。
微分幾何学に依拠する関係理論を概説し、対応する勾配偏光最適化アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2024-08-28T20:56:35Z) - Linear Codes for Hyperdimensional Computing [9.7902367664742]
ランダムな線形符号は、キー-値ストアを形成するために使用できるリッチなサブコード構造を提供する。
筆者らが開発しているフレームワークでは、ランダムな線形符号は単純なリカバリアルゴリズムを(束縛あるいは束縛された)構成表現に含めていることが示される。
論文 参考訳(メタデータ) (2024-03-05T19:18:44Z) - An Encoding Framework for Binarized Images using HyperDimensional
Computing [0.0]
本稿では,近傍のパターンの類似性を保ったバイナライズされた画像を符号化する,新しい軽量化手法を提案する。
この方法は、MNISTデータセットのテストセットで97.35%、Fashion-MNISTデータセットで84.12%に達する。
論文 参考訳(メタデータ) (2023-12-01T09:34:28Z) - NDC-Scene: Boost Monocular 3D Semantic Scene Completion in Normalized
Device Coordinates Space [77.6067460464962]
SSC(Monocular 3D Semantic Scene Completion)は、単一の画像から複雑なセマンティックスや幾何学的形状を予測し、3D入力を必要としないため、近年大きな注目を集めている。
我々は,3次元空間に投影された2次元特徴の特徴的曖昧さ,3次元畳み込みのPose Ambiguity,深さの異なる3次元畳み込みにおける不均衡など,現在の最先端手法におけるいくつかの重要な問題を明らかにする。
シーン補完ネットワーク(NDC-Scene)を考案し,2を直接拡張する。
論文 参考訳(メタデータ) (2023-09-26T02:09:52Z) - Information Entropy Initialized Concrete Autoencoder for Optimal Sensor
Placement and Reconstruction of Geophysical Fields [58.720142291102135]
そこで本稿では,スパーク計測による地場再構成のためのセンサ配置の最適化について提案する。
本研究では, (a) 温度と (b) バレンツ海周辺の塩分濃度場とスバルバルド諸島群を例に示す。
得られた最適センサ位置は, 物理的解釈が明確であり, 海流の境界に対応することが判明した。
論文 参考訳(メタデータ) (2022-06-28T12:43:38Z) - Recursive Binding for Similarity-Preserving Hypervector Representations
of Sequences [4.65149292714414]
HDC/VSAソリューションを設計するための重要なステップは、入力データからそのような表現を得ることである。
ここでは, 近傍位置における同一配列要素の類似性を両立させる分散表現への変換を提案する。
単語類似性の人間の知覚をモデル化するためのシンボル文字列を用いて,提案手法を実験的に検討した。
論文 参考訳(メタデータ) (2022-01-27T17:41:28Z) - Cogradient Descent for Dependable Learning [64.02052988844301]
双線形最適化問題に対処するために,CoGDアルゴリズムに基づく信頼度の高い学習法を提案する。
CoGDは、ある変数がスパーシティ制約を持つ場合の双線形問題を解くために導入された。
また、特徴と重みの関連を分解するためにも使用できるため、畳み込みニューラルネットワーク(CNN)をより良く訓練するための我々の手法をさらに一般化することができる。
論文 参考訳(メタデータ) (2021-06-20T04:28:20Z) - Why Approximate Matrix Square Root Outperforms Accurate SVD in Global
Covariance Pooling? [59.820507600960745]
本稿では,前方通過のSVDと後方伝播のPad'e近似を用いて勾配を計算する新しいGCPメタ層を提案する。
提案するメタレイヤは,さまざまなCNNモデルに統合され,大規模および微細なデータセット上で最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-05-06T08:03:45Z) - Linear Convergence of the Subspace Constrained Mean Shift Algorithm:
From Euclidean to Directional Data [3.60425753550939]
SCMSアルゴリズムは、適応的なステップサイズを持つ部分空間制約付き勾配上昇アルゴリズムの特別な変種であると主張する。
提案した方向性SCMSアルゴリズムの線形収束性を証明する。
論文 参考訳(メタデータ) (2021-04-29T01:46:35Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
双線形問題に対処するために、CoGDアルゴリズム(Cogradient Descent Algorithm)を導入する。
一方の変数は、他方の変数との結合関係を考慮し、同期勾配降下をもたらす。
本アルゴリズムは,空間的制約下での1変数の問題を解くために応用される。
論文 参考訳(メタデータ) (2020-06-16T13:41:54Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
このアルゴリズムのクラスは、最小二乗問題に対する最も高速な解法のうち、いくつかのランダム化手法を含んでいる。
我々は2つの古典的埋め込み、すなわちガウス射影とアダマール変換のサブサンプリングに焦点を当てる。
得られたアルゴリズムは条件数に依存しない最小二乗問題の解法として最も複雑である。
論文 参考訳(メタデータ) (2020-02-21T17:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。