COMBO: Compositional World Models for Embodied Multi-Agent Cooperation
- URL: http://arxiv.org/abs/2404.10775v1
- Date: Tue, 16 Apr 2024 17:59:11 GMT
- Title: COMBO: Compositional World Models for Embodied Multi-Agent Cooperation
- Authors: Hongxin Zhang, Zeyuan Wang, Qiushi Lyu, Zheyuan Zhang, Sunli Chen, Tianmin Shu, Yilun Du, Chuang Gan,
- Abstract summary: Decentralized agents must cooperate given only partial egocentric views of the world.
We train generative models to estimate the overall world state given partial egocentric observations.
We learn a compositional world model for multi-agent cooperation by factorizing the naturally composable joint actions of multiple agents.
- Score: 64.27636858152522
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we investigate the problem of embodied multi-agent cooperation, where decentralized agents must cooperate given only partial egocentric views of the world. To effectively plan in this setting, in contrast to learning world dynamics in a single-agent scenario, we must simulate world dynamics conditioned on an arbitrary number of agents' actions given only partial egocentric visual observations of the world. To address this issue of partial observability, we first train generative models to estimate the overall world state given partial egocentric observations. To enable accurate simulation of multiple sets of actions on this world state, we then propose to learn a compositional world model for multi-agent cooperation by factorizing the naturally composable joint actions of multiple agents and compositionally generating the video. By leveraging this compositional world model, in combination with Vision Language Models to infer the actions of other agents, we can use a tree search procedure to integrate these modules and facilitate online cooperative planning. To evaluate the efficacy of our methods, we create two challenging embodied multi-agent long-horizon cooperation tasks using the ThreeDWorld simulator and conduct experiments with 2-4 agents. The results show our compositional world model is effective and the framework enables the embodied agents to cooperate efficiently with different agents across various tasks and an arbitrary number of agents, showing the promising future of our proposed framework. More videos can be found at https://vis-www.cs.umass.edu/combo/.
Related papers
- Enabling Multi-Robot Collaboration from Single-Human Guidance [5.016558275355615]
We propose an efficient way of learning collaborative behaviors in multi-agent systems by leveraging expertise from only a single human.
We show that agents can effectively learn to collaborate by allowing a human operator to dynamically switch between controlling agents for a short period.
Our experiments showed that our method improves the success rate of a challenging collaborative hide-and-seek task by up to 58$% with only 40 minutes of human guidance.
arXiv Detail & Related papers (2024-09-30T00:02:56Z) - Synergistic Simulations: Multi-Agent Problem Solving with Large Language Models [36.571597246832326]
Large Language Models (LLMs) have increasingly demonstrated the ability to facilitate the development of multi-agent systems.
This paper aims to integrate agents & world interaction into a single simulation where multiple agents can work together to solve a problem.
We implement two simulations: a physical studio apartment with two roommates, and another where agents collaborate to complete a programming task.
arXiv Detail & Related papers (2024-09-14T21:53:35Z) - Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning [51.52387511006586]
We propose Hierarchical Opponent modeling and Planning (HOP), a novel multi-agent decision-making algorithm.
HOP is hierarchically composed of two modules: an opponent modeling module that infers others' goals and learns corresponding goal-conditioned policies.
HOP exhibits superior few-shot adaptation capabilities when interacting with various unseen agents, and excels in self-play scenarios.
arXiv Detail & Related papers (2024-06-12T08:48:06Z) - Scaling Large-Language-Model-based Multi-Agent Collaboration [75.5241464256688]
Pioneering advancements in large language model-powered agents have underscored the design pattern of multi-agent collaboration.
Inspired by the neural scaling law, this study investigates whether a similar principle applies to increasing agents in multi-agent collaboration.
arXiv Detail & Related papers (2024-06-11T11:02:04Z) - Reaching Consensus in Cooperative Multi-Agent Reinforcement Learning
with Goal Imagination [16.74629849552254]
We propose a model-based consensus mechanism to explicitly coordinate multiple agents.
The proposed Multi-agent Goal Imagination (MAGI) framework guides agents to reach consensus with an Imagined common goal.
We show that such efficient consensus mechanism can guide all agents cooperatively reaching valuable future states.
arXiv Detail & Related papers (2024-03-05T18:07:34Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
We propose a multi-agent framework framework that can collaboratively adjust its composition as a greater-than-the-sum-of-its-parts system.
Our experiments demonstrate that framework framework can effectively deploy multi-agent groups that outperform a single agent.
In view of these behaviors, we discuss some possible strategies to leverage positive ones and mitigate negative ones for improving the collaborative potential of multi-agent groups.
arXiv Detail & Related papers (2023-08-21T16:47:11Z) - Building Cooperative Embodied Agents Modularly with Large Language
Models [104.57849816689559]
We address challenging multi-agent cooperation problems with decentralized control, raw sensory observations, costly communication, and multi-objective tasks instantiated in various embodied environments.
We harness the commonsense knowledge, reasoning ability, language comprehension, and text generation prowess of LLMs and seamlessly incorporate them into a cognitive-inspired modular framework.
Our experiments on C-WAH and TDW-MAT demonstrate that CoELA driven by GPT-4 can surpass strong planning-based methods and exhibit emergent effective communication.
arXiv Detail & Related papers (2023-07-05T17:59:27Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.