Testing Link Fidelity in a Quantum Network using Operational Form of Trace Distance with Error Bounds
- URL: http://arxiv.org/abs/2404.10803v1
- Date: Tue, 16 Apr 2024 08:36:37 GMT
- Title: Testing Link Fidelity in a Quantum Network using Operational Form of Trace Distance with Error Bounds
- Authors: John T. M. Campbell, Nicola Marchetti, John Dooley, Indrakshi Dey,
- Abstract summary: Quantum state comparison, utilizing metrics like fidelity and trace distance, underpins the assessment of quantum networks within quantum information theory.
We establish a trace distance vs. fidelity benchmark incorporating error bounds, and bridging quantum operations with tensor network analysis.
- Score: 4.876902732768269
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum state comparison, utilizing metrics like fidelity and trace distance, underpins the assessment of quantum networks within quantum information theory. While recent research has expanded theoretical understanding, incorporating error analysis and scalability considerations remains crucial for practical applications. The primary contribution of this letter is to address these gaps by deriving the novel operational trace distance for multi-node networks, establishing a trace distance vs. fidelity benchmark incorporating error bounds, and bridging quantum operations with tensor network analysis. We further explore the application of tensor network tools to quantum networks, offering new analytical avenues. This comprehensive approach provides a robust framework for evaluating quantum network performance under realistic error conditions, facilitating the development of reliable quantum technologies.
Related papers
- Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Practical limitations on robustness and scalability of quantum Internet [0.7499722271664144]
We study the limitations on the scaling and robustness of quantum Internet.
We present practical bottlenecks for secure communication, delegated computing, and resource distribution among end nodes.
For some examples of quantum networks, we present algorithms to perform different quantum network tasks of interest.
arXiv Detail & Related papers (2023-08-24T12:32:48Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Quantum-enhanced metrology with network states [8.515162179098382]
We prove a general bound that limits the performance of using quantum network states to estimate a global parameter.
Our work establishes both the limitation and the possibility of quantum metrology within quantum networks.
arXiv Detail & Related papers (2023-07-15T09:46:35Z) - Entangled Pair Resource Allocation under Uncertain Fidelity Requirements [59.83361663430336]
In quantum networks, effective entanglement routing facilitates communication between quantum source and quantum destination nodes.
We propose a resource allocation model for entangled pairs and an entanglement routing model with a fidelity guarantee.
Our proposed model can reduce the total cost by at least 20% compared to the baseline model.
arXiv Detail & Related papers (2023-04-10T07:16:51Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Quantum Network Utility: A Framework for Benchmarking Quantum Networks [14.638996634412976]
We propose a general framework for quantifying the performance of a quantum network.
We define the quantum network utility metric $U_QN$ to capture the social and economic value of quantum networks.
arXiv Detail & Related papers (2022-10-19T17:50:11Z) - Symmetries in quantum networks lead to no-go theorems for entanglement
distribution and to verification techniques [0.0]
We show that symmetries provide a versatile tool for the analysis of correlations in quantum networks.
We provide an analytical approach to characterize correlations in large network structures with arbitrary topologies.
Our methods can be used to design certification methods for the functionality of specific links in a network.
arXiv Detail & Related papers (2021-08-05T16:52:37Z) - The Computational and Latency Advantage of Quantum Communication
Networks [70.01340727637825]
This article summarises the current status of classical communication networks.
It identifies some critical open research challenges that can only be solved by leveraging quantum technologies.
arXiv Detail & Related papers (2021-06-07T06:31:02Z) - Semidefinite tests for quantum network topologies [0.9176056742068814]
Quantum networks play a major role in long-distance communication, quantum cryptography, clock synchronization, and distributed quantum computing.
The question of which correlations a given quantum network can give rise to, remains almost uncharted.
We show that constraints on the observable covariances, previously derived for the classical case, also hold for quantum networks.
arXiv Detail & Related papers (2020-02-13T22:36:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.