CrossGP: Cross-Day Glucose Prediction Excluding Physiological Information
- URL: http://arxiv.org/abs/2404.10901v1
- Date: Tue, 16 Apr 2024 20:40:59 GMT
- Title: CrossGP: Cross-Day Glucose Prediction Excluding Physiological Information
- Authors: Ziyi Zhou, Ming Cheng, Yanjun Cui, Xingjian Diao, Zhaorui Ma,
- Abstract summary: Early glucose prediction for diabetic patients is necessary for timely medical treatment.
We propose CrossGP, a novel machine-learning framework for cross-day glucose prediction.
- Score: 4.975538965305628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing number of diabetic patients is a serious issue in society today, which has significant negative impacts on people's health and the country's financial expenditures. Because diabetes may develop into potential serious complications, early glucose prediction for diabetic patients is necessary for timely medical treatment. Existing glucose prediction methods typically utilize patients' private data (e.g. age, gender, ethnicity) and physiological parameters (e.g. blood pressure, heart rate) as reference features for glucose prediction, which inevitably leads to privacy protection concerns. Moreover, these models generally focus on either long-term (monthly-based) or short-term (minute-based) predictions. Long-term prediction methods are generally inaccurate because of the external uncertainties that can greatly affect the glucose values, while short-term ones fail to provide timely medical guidance. Based on the above issues, we propose CrossGP, a novel machine-learning framework for cross-day glucose prediction solely based on the patient's external activities without involving any physiological parameters. Meanwhile, we implement three baseline models for comparison. Extensive experiments on Anderson's dataset strongly demonstrate the superior performance of CrossGP and prove its potential for future real-life applications.
Related papers
- AttenGluco: Multimodal Transformer-Based Blood Glucose Forecasting on AI-READI Dataset [8.063401183752347]
Diabetes is a chronic metabolic disorder characterized by persistently high blood glucose levels (BGLs)
Recent deep learning models show promise in improving BGL prediction.
We propose AttenGluco, a multimodal Transformer-based framework for long-term blood glucose prediction.
arXiv Detail & Related papers (2025-02-14T05:07:38Z) - Let Curves Speak: A Continuous Glucose Monitor based Large Sensor Foundation Model for Diabetes Management [3.8195320624847833]
Integrating AI with continuous glucose monitoring holds promise for near-future glucose prediction.
CGM-LSM is pretrained on 15.96 million glucose records from 592 diabetes patients for near-future glucose prediction.
LSM achieved exceptional performance, with an rMSE of 29.81 mg/dL for type 1 diabetes patients and 23.49 mg/dL for type 2 diabetes patients in a two-hour prediction horizon.
arXiv Detail & Related papers (2024-12-12T21:35:13Z) - From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [47.23780364438969]
We present GluFormer, a generative foundation model for CGM data that learns nuanced glycemic patterns and translates them into predictive representations of metabolic health.
GluFormer generalizes to 19 external cohorts spanning different ethnicities and ages, 5 countries, 8 CGM devices, and diverse pathophysiological states.
In a longitudinal study of 580 adults with CGM data and 12-year follow-up, GluFormer identifies individuals at elevated risk of developing diabetes more effectively than blood HbA1C%.
arXiv Detail & Related papers (2024-08-20T13:19:06Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Toward Short-Term Glucose Prediction Solely Based on CGM Time Series [4.7066018521459725]
TimeGlu is an end-to-end pipeline for short-term glucose prediction based on CGM time series data.
It achieves state-of-the-art performance without the need for additional personal data from patients.
arXiv Detail & Related papers (2024-04-18T06:02:12Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Patterns Detection in Glucose Time Series by Domain Transformations and
Deep Learning [0.0]
We describe our research with the aim of predicting the future behavior of blood glucose levels, so that hypoglycemic events may be anticipated.
We have tested our proposed method using real data from 4 different diabetes patients with promising results.
arXiv Detail & Related papers (2023-03-30T09:08:31Z) - Label scarcity in biomedicine: Data-rich latent factor discovery
enhances phenotype prediction [102.23901690661916]
Low-dimensional embedding spaces can be derived from the UK Biobank population dataset to enhance data-scarce prediction of health indicators, lifestyle and demographic characteristics.
Performances gains from semisupervison approaches will probably become an important ingredient for various medical data science applications.
arXiv Detail & Related papers (2021-10-12T16:25:50Z) - Deep Personalized Glucose Level Forecasting Using Attention-based
Recurrent Neural Networks [5.250950284616893]
We study the problem of blood glucose forecasting and provide a deep personalized solution.
We analyze the data and detect important patterns.
We empirically show the efficacy of our model on a real dataset.
arXiv Detail & Related papers (2021-06-02T01:36:53Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
Parkinsons Disease is a neurological disorder and prevalent in elderly people.
Traditional ways to diagnose the disease rely on in-person subjective clinical evaluations on the quality of a set of activity tests.
We propose a novel time-series based approach to predicting Parkinson's Disease with raw activity test data collected by smartphones in the wild.
arXiv Detail & Related papers (2020-09-25T01:50:15Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.